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PREFACE.

A rarr of this collection of examples has been published by
me before in a Collection of Examples and Problems on Condcs
and some of the Higher Plane Curves. In this volume I
have added a good many more examples, besides giving
solutions of the more difficult ones which were left un-
solved. I believe that either the examples themselves, or
the methods of their solution, are to a great extent original.

A large number of the examples contain properties of
circles connected with a conic, and especially of those which
have double contact with the curve. In proving the pro-
perties of the latter systems of circles I have made frequent
use of their differential equations in elliptic co-ordinates,
the given curve being one of the system of confocal conics.
In the same co-ordinates I have also made use of the
differential equations of the tangents to a conic, and the
systems of conics having double contact with two fixed
confocal conics. The method of elliptic co-ordinates sim-
plifies greatly the study of relations involving the angles
of intersection of such systems, whose differential equations
take a simple form.



vi PREFACE.

I have added a section on Sphero-Conics at the end of
the book. Most of these examples are extensions of results
already obtained for the case of the plane curves. I have
again here made a free use of elliptic co-ordinates.

I have assumed the reader to be familiar with Dr.
Salmon’s Conic Sections, and have constantly made refe-
rences throughout to that work. I have also occasionally
referred to his works on the Higher Plane Curves, and

Geometry of Three Dimensions.

March, 1884.
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EXAMPLES ON CONICS.

I.—INSCRIBED TRIANGLES.

1. To find the equation of the circle ciroumscribing a
triangle inscribed in a conic.

Let the equation of the conic be

z* ?Zf 17
PR 1=U-=0,
and that of the circle
2+ yt -2 -2y +E=8=0;

then if P, @ are a pair of chords of intersection of U and 8,
we must have a relation of the form § - 2*U = AP®, where
% and X are constants. But if P, @ be expressed in terms of

the eccentric angles of their extremities, we have (Salmon’s
Conics, Art. 231, Ex. 2),

Ez cos¥(a+ ) + % sin 4 (a + 3) — cos L (a - B),

QE

cosL(y+ &) + bgsm%(«,w) ~cosL(y-8);

hence, equating the coefficients of 2%, y*, &ec., in the identity
S - 1*U = APQ, we get
a* — h* = Xcos(a+ [3) cosd(y +9), (1)
0 -k =Asind(a+ ) sin3(y +9), ®)
B

R
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O=sind(a++7y+3), (3)
2ax’ =\{cosd(a—[3)cos 3 (y+3)+cos(a+(3)cosL(y-3)}(4)
Rby" = N{cos%(a—3)sin 3 (y+9)+sin(a+3)cosL(y~-3)}(5)

B+ it =Xcost(a—3) cosy(y—9). (6)

From (1), (2), (3), we obtain a+ (3+y+8=0,A=a*-0%,
and 7% = @*sin*3 (a + 3) + 6*cos’ 4 (a + (3) = the square of the
semi-diameter parallel to P or @; and substituting these
values of &, A, and 4 in (4), (5), (6), we get

2 2

o =2 p, cos 4 (a + 3) cos (B +v) cost(y +a), (7)

2

y =25 sin (o B)sind (B + ) sinb(y + @), (8)

i =3 (a* = b*){cos (a + 3) +cos (B +y) + cos(y + a)}
— L(a® + b7). 9)

Since the diseriminant of S - %2*U vanishes, »* must
satisfy the equation

x/z ?//2 7’_2

ey iy TRl T

or ¢ —t(at+ b+t =2 =) + I (@R + 1 (a? + BY)
= 0'? - @yt - a0t = 0, (10)

where 7 is the radius of S. Now the three values %2, 4.2, A
obtained from this equation are evidently the squares of the

semi-diameters parallel to the sides of the triangle ; hence

from the absolute term of (10) » = }ﬁgg@ Also, if we put

a* — h*or b - * = ¢ in (10), we can find the expressions for
#, 3 from the absolute term of the equation in ¢.
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‘We might find the co-ordinates of the centre of § thus:
Eliminating y between the equations of § and U, we get
(@ = 0*)at — 40?2 2® + &e. = 0
hence, if %, %, @3, . belong to the four points of intersection
of Sand U,
, a0
i
~ @t — b?
 4a
which is equivalent to the expression already obtained.
Similarly, by eliminating z, we get

2 a2

Y = 4—6 {sina + sin 3 + siny—sin (a+ 3 +4)}. (12)

2. To find the equation of the circle through the middle

points of the sides of the same triangle.
Let the equation of the circle be

(1 + 2 + 25 + @)

{cos a + cos 3+ cosy +cos (a+ 3 +7v)}, (11)

@+t - 2w -2y + K =0,
and let /, ¢ be the co-ordinates of the centre of the circum-
seribing circle, and a, 3 those of the centroid ; then, by a
known geometrical relation,

2" =383a -2, 2y =3B-vy.

Now we have
a=%a(cosa+cos B+cosy), B=%b(sina+sinB +siny);
hence we have
I C R
YT T 8
» (0 +3a

YE T

(cos a + cos 3 + cosy) — (a 8_”6 )oos (a+ B+7), (1)

. . . (*=0°) .
(sin a +sin 3 +siny) + S sin(a+3+7y). (2)

B 2
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To find 4* we have &* = &% + ¥ — Lr*, where » is the
radius of the circumscribed circle ; hence

K7 = +{(Ba =2 + (8B -y - )

1{3a(Ba-2) + 3B (33 -2y + 2™ +y* —+*}

& (cos a + cos 3 + cosy) {(a*+ b*)(cos a + cos 3 + cos y)
—(a* =" cos(a+f3+7))

+ 4 (sina+sinB+sin y){(a*+ b*)(sin a + sin f3 + sin )

~(@*=0)sin (a+ B +7))

Il

il

*— 5% {cos(a+3)+cos(B+vy)+cos(y+a)} -+ (a®+0%)

+
o o

1l

(
(a*+8%) { (cosa+ cos3 cosy)*+(sina + sin (3 + siny)*— 1}
(@

[I

@+ ) {1 +cos(a—f3)+cos(B-7)+cos(y—a)}
=(a*+ ") cos 3(a - fB3) cos  (B-y)cos §(y-a).  (3)

3. To find the locus of the centroid of an equilateral
triangle inseribed in a conie.

Equating the co-ordinates of the centroid and the centre
of the circumscribing circle, we get, if a+ (3 +y=-3,

_a(a*- ") cos d _ b(@-b)sind

F+3¢ Y7 0* + 3

hence the locus is the conic
N (4 3at)? = (@ - )

‘We may find the locus thus for the parabola ¢* — pz = 0.
Let 2* + y* — 2az — 2By + &* = 0 be the equation of the cir-
cumscribing circle, then eliminating y between the equations
of the circle and parabola, we get #* + 2 (p - 2a) 2* + &e. = 0,

whence 2(2a — p)= @ + # + @, + #;; and similarly eliminat-
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ing 2, we find y; + 2 + s + s = 0. But the centre of the
circle being the centroid of the triangle, we have ,+2,+#;=3a,
Yo+ Yo+ ys=33; hence a=2p +x, 33 = - y.; therefore
9B* = p(a - 2p).

4. If the centroid of a triangle inscribed in a hyperbola
lies on the curve, the eccentric angles must satisfy the equa-
tion (cos @ + cos 3 + cosy)*+ (sin @ + sinf3 + sin y)*= 9,
or cosi(a - f3) cosi (B -1y) cosi(y —a)=1(1); hence from
Ex. 2 (3), we have £ = o’ + ¢*, from which we see that the
circle passing through the middle points of the sides of the
triangle cuts orthogonally the director circle. The eccentric
angles ‘are of course imaginary for the hyperbola, but this
does not affect the validity of the proof. When the rela-
tion (1) is satisfied, the area of the triangle formed by the
tangents at the vertices is equal to half the area of the given
triangle.

The relation (1) can also be written in the form

V/sin (B = y) ++/sin (y — a) + 4/sin(a - 3) = 0,

from which it can be seen that the ellipse touching the sides
of the triangle at their middle points passes through the
centre of the curve.

5. If B+t -2 -2y + K =0 (1)

represents the circle passing through the extremities of three

semi-diameters of the ellipse % + % -1 =0, show that

b, 2

x2+y2—2;yx+bx"i/—(a2+b“+k2)=0 (2)

represents the circle passing through the extremities of the
three conjugate semi-diameters.
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Also show that if the circle (1) cuts orthogonally the circle
2+ y* = 2aw— 2By + £ =0,
the circle (2) cuts orthogonally

x2+y2+2§ﬁm—2—bay+a2+b2—k’Z:O.
a

6. Corresponding points on the confocal conics

x‘& :l/Z x‘l yz
EZ‘FZE—lEU"—‘O, &72'4'5,5—15]7:0
are connected by the relations
v YT
a d b b’

show that if 2*+y*—2az — 23y + &* = 0 represents the circle
passing through three points on U,

2
x2+?/2——a—[faw—%I;By+k2+a2—a'2=0

will represent the circle passing through the three corre-
sponding points on V.
7. To find the locus of the centroid of a triangle inseribed
2 2
in one conic z%+ % — 1=U = 0, and circumsecribed about

another whose tangential equation is
(4, B, C, F, G, H)(A\, p, v)* = = = 0.
Writing down the condition that the chord of U,

gcos%(cukﬁ) +‘%sin%(a+/3)—cos$(a—[3)=0,

should touch ¥, and two similar equations for the other sides
of the triangle, multiplying them by sin (a - (3), sin (3 - v),
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sin (y - a), respectively, and adding them together we get,
after dividing by sin & (a — 3), sin £ (8 — v), sin & (y - a),

C{l +4cos3(a—B)cos5(3—y)cosd(y—a)}

G
—25(COSa+cosB+cos7)

—2§(sina+sinﬁ+siny)+;—f+£=0. (1)

But OOSa+00SB+COSy=§, s1na+s1n[3+sm7=3%,
. 1 . A

and 1+8cosi(a-B)cos3(B-y)cosi(y-a)=9 a2t 32);
/

hence, from (1), we have for the equation of the locus the

conic
(7Y 1 (G By, o4, B, o

90{ 5+ )~ 12 + b2>+ 2( G+ 5)r0=0. @

There is, of course, an invariant relation connecting

= and U; and if we have also % = g, H =0, it can be shown
that the centroid of the triangle is fixed. For, if we elimi-
nate y between the equations

. . . 3y
s1na+sm[3+sm7=TJ,

«
7

cosa + cosf3 + cosy =

a’
we get
oyt 21/ a 1 1
9 i 1 +4cos %\a—ﬁ)—wg cos 3 (a—f3) cos & (a +[3)

- 12%cosé(a—ﬁ)sin§(a+ﬁ)=0,

a* b
Putting €' =0 in (2), we see that the locus of the cen-
troid of a triangle circumscribed about a conic and inscribed

or <9”2 A 1>(a2)\2+bz,u2)+4v2+12% WA +12 % = 0.
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in a parabola is a right line. This result may be readily
arrived at geometrically by projecting the conic orthogonally
into a circle. The centre of the circumscribed circle is then
fixed, and the intersection of perpendiculars lies on the direc-
trix of the parabola ; therefore, &ec.

8. Since the centroid of a triangle is the pole of the line
at infinity with regard to the triangle, by projecting the
results of the preceding example we see that, if a triangle be
inscribed in a conic U, and eircumscribed about a conic 7,
the locus of the pole of a fixed line L, with regard to the
triangle, is a conic, which reduces to a line if L touches V,
the other factor being L. Also, if U, ¥, and L are connected
by two relations besides the invariant relation between U and
V, the pole of L, with regard to the triangle, is fixed. L is
then, in fact, the chord of contact of two tangents of U which
touch 7.

9. 4, B, C are the vertices of a fixed triangle inscribed
in a conic, and P is a variable point on the curve: to find
the locus of the centroid of the triangle formed by the lines
bisecting PA, PB, PC, at right angles.

2 2
Let the conic be Zi? + % ~1=0,and a, 3, v, ¢ the eccen-

tric angles of 4, B, C, P, respectively ; then the intersection
(21, 4,) of the lines bisecting P4, PB at right angles is the
centre of the circle passing through P, 4, B; hence, from
(11) and (12) Ex. 1, we have
2
@, =£& {cosa+ cos 3 +cos ¢ +cos(a+B+¢)],
" =-§— (sina+sinB+sing - sin(a+ B+ ¢),

and similar values for the co-ordinates .., @,y. of the other
vertices of the variable triangle.
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62

12a
+3cos¢ +cos(a+ B+¢)+cos(B+y+¢)+cos(y+a+g)],

Butz=1(z,+m+ )= {2 (cos a + cos 3 + cos y)

2
and y=4(y+y:+9s) = - ﬁ) {(2(sin a + sin B + siny)

+3sin¢—sin(a+ 3+ ¢)—sin(B+y+¢) —sin(y +a+¢)},
where z, ¥ are the co-ordinates of the centroid of the variable
triangle ; hence, eliminating ¢ between these equations, we
see that the locus is in general a conic. When the centroid
of the fixed triangle coincides with the centre of the curve,
we have cosa +cosf3+cosy =0, sina+sinf3 +siny =0,

04

E:
of the position of the fixed triangle.

If (cosa+cos B+ cosy)*+(sina +sin@ +sin y)*=9, in
which case the centroid of the fixed triangle is on the curve,
and the conic must be a hyperbola, the locus reduces to a
line passing through the centre of the circle circumscribing
the fixed triangle.

10. Triangles are inscribed in a conie, so that the circum-
seribing circles pass through a focus; to show that one of the
circles touching the sides has double contact with a fixed
conie.

Let A4, B, C be the vertices of the triangle, and F a focus
of the conic; then, from Ptolemy’s theorem, we have

BC.FA + CA.FB+ AB.FC=0. (1)

But Fd, FB, FC are proportional to the perpendiculars
a, 3, v from 4, B, C on the directrix; hence from (1)
BC.a+CA4.3 +A4B.y=0(2), from which it readily follows
that the centre of one of the circles touching the sides of the
triangle lies on the directrix.

and the locus is then a*2® + b*y* = which is independent
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Now when a circle (z — 2)* + (y = %/)*=1r*= 8§ =0 is in-

2
seribed in a triangle inseribed in the conic g + ‘2/—2— 1=8=0,

we must have the relation ©” — 4A’© = 0 between the inva-
riants, or (Salmon’s Conics, Art. 371, Ex. 4),

oy (1 1\)2 42 s ,
“—2+b—2—1a7""<gz+zg>} = (@ + 0* + »* = 2 — y”).

Solving this equation for » we get

Coab (| . G\
"= ‘n/< ] ?)HK” o T

2

. . a

where ¢* =a* - b*; hence, putting 2 = —,
¢

2 4
s _ N b
= gj{y + 2

subject to which conditions it can easily be seen that §” has
double contact with the conic
@ oyt R a -0t

— 4+ - =t = 0.
at b c ct

11. Triangles are inscribed in a conie and circumseribed
about a fixed circle; to find the envelope of the ciroumserib-
ing ciroles.

Let 4, B, C be the vertices of the triangle, and a, 3, y
the perpendiculars from A, B, C' on a line drawn through
the centre of the fixed circle parallel to one of the axes of the
curve, then BC.a + 04.8+ AB.y=0(1). But « G, y are
proportional to the tangents ¢, %, ¢, drawn from 4, B, C to
the circle having double contact with the curve at the points
where it is met by the parallel to the axis (Salmon’s Conics,
Art. 261); hence from (1) BC.# + CA .t + AB. ¢ = 0(2),
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Now, by Dr. Casey’s theorem, if four circles are all touched
by a fifth, their common tangents (12), &e. are connected by
the relation (12)(34) + (13) (24) + (23 (14) = 0 (Salmon’s
Comics, Art. 121 (a)) ; henece, by supposing the radii of the
circles (1), (2), (3) to vanish, we see that the relation (2) ex-
presses that the circle having double contact with the curve
touches the circle passing through 4, B, C. Since we may
draw a parallel to either axis through the centre of the fixed
circle, we see that the circumscribing circle will touch the
two circles having double contact with the curve at the points
where it is met by these parallels.

12. A triangle is inscribed in a conic so that the circum-
seribing circle touches a fixed circle having double contact
with the conic; show that one of the ecircles touching the
sides has double contact with a fixed parallel curve to a
conic (see Ex. 11 and Ex. 10 (8)).

13. A triangle, self-conjugate with regard to a conio V, is
inscribed in a conie U'; show that circles having double oon-
tact with U, whose chords of contact touch 7, cut orthogonally
the director circle of 7.

14. Given a triangle inscribed in a conic, if a focus lies
on a fixed circle, to find the envelope of the corresponding
directrix.

If pi, psy p; denote the distances of a point from the ver-
tices of the triangle, and «, b, ¢ the sides, it can be seen from
Ptolemy’s theorem that

d4px4 + b4p24 + C‘;p:{; _ 2[)202;022/032 — 920 a? P32P12 —2a* b2p12p22 - U

is proportional to the square of the tangent from the point to
the circumscribing circle. It follows then that any circle can
be written in the form U — (Jo,* + mp,* + np;?)’ = 0 (1). But
p1 P2, ps are proportional to the perpendiculars from the ver-
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tices of the triangle on the directrix; hence from (1) we have
for the tangential equation of the envelope of the directrix

atat + 6434 + 04,}/4 - 262026272 _ 2024272112 -—2@252(1232
- (la® + mf3* + nyg)2 =0.

Since a*a' + &c. is the product of the factors
aa+b[3+c'y, (la+bﬁ—c'y, aa—bﬁ-&-c'y, aa-bﬁ—c«/,

it follows that the envelope has the centres of the circles
touching the sides for double points.

15. Let ABC be a triangle inscribed in a coniec U, and =
a circle having double contact with U at points on a parallel
to its minor axis. Let ¢, ¢ be the lengths of the direot and
transverse common tangents of = and the circle circumserib-
ing ABC, and let p, p, ps, ps be the perpendiculars from the
centres of the four circles touching the sides BC, C4, 4B on
the chord of contact of = and U. Show that £ ¢* = e*pip,psps,
where ¢ is the eccentricity of U (see Ex. 11).

16. A triangle is inscribed in a variable parabola; to find
the locus of the intersection of the perpendiculars of the tri-
angle formed by the tangents to the curve at the vertices of
the triangle.

Consider two consecutive parabolas indefinitely near one
another, circumscribed about the triangle, then the intersections
of the perpendiculars of the triangles formed by the tangents
lie on the directrices of the ecorresponding parabolas, and,
therefore, the ultimate intersection of the directrices is the
point whose locus we seek. Thus we see that the locus coin-
cides with the envelope of the directrix.

Let pi, p:, ps denote the distances of a point from the
vertices of the triangle, and «, b, ¢, 4, B, C' the sides and
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angles, respectively, then we can verify the following iden-
tical relation :

@pi* + U p,t + P pst — 2bc cos 4 p’ps” — 2ea cos B pyp®
— 2ab cos C p,*p.* — 2abe (a cos 4 pi* + b cos B p,?
+ccos Cpst) + a0t = 0. (1)
But py, p2, ps are equal to the perpendiculars «, (3, v from the
vertices on the directrix; hence from (1)
atat + 03 + *y* — Rbc cos 4 (3*y* - 2ca cos B y*a’
— 2ab cos C o*(3* — 2abc (@ cos Aa® + b cos B*
+ ccos Cy°) + a*b*c* = 0, ()

which being rendered homogeneous by means of the identical
relation connecting a, 3, v, viz.,

@a* + B 37 + *y* — 2b¢ 008 A 3y — 2¢a cos Bya
— 2ab cos Caf3 = 4 A?,

shows that the envelope is of the fourth class.
It can be shown that the curve (2) is universal. For

the tangential equation I./a + m +/f + n /y = 0, where
I+ m + n =0 represents a series of parabolas circumseribing
the triangle, and the tangential co-ordinates of the directrix
can then be expressed as functions of /, m, n of the fourth
degree (Salmon’s Conics, Art. 383). The locus thus appears
to be of the sixth degree.

17. The co-ordinates of the centroid of a triangle 4 B C,
inscribed in the parabola 42 — px = 0, are a, (3 ; show that the
co-ordinates z, y of the centroid of the triangle formed by the
tangents at 4, B, C are given by the equations

2pw = 33 - pa, y=L0.
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18. Show that the equation of the circle passing through
the middle points of the sides of a triangle, inscribed in the
parabola y* — px = 0, is

4p* (2 + ) = 2 (P = Bp =P = 2R pr+ P — i)y
+ 2p2 (pz +p2) =‘O7

where pi, p, p; are the sum, sum of the products in pairs,
and product, respectively, of the ordinates ¥, y., y; of the
vertices of the triangle.

19. A triangle ABC is inscribed in a parabola whose
focus is F'; to show that one of the circles touching the lines
which bisect #4, FB, FC at right angles passes through the
centre of the circle circumseribing A BC.

Let pi, 71, 75, 75 denote the distances of a point P from

F, A, B, C respectively; then if «, (3, y are the perpendi-
culars from P on the lines bisecting ¥4, F'B, FC at right

angles, we have
pt = rt=2dia, p*—rt=2df3, p*—n'=2dy, (1)
where d, = FA4, &. Now the equation of a circle touching
a, 3, v 1is
cost A/ a+costB./B+eostCy/y=0;

or from (1)
Y ere-n

sin L (0, - 0, J( (;

+ sin & J\p (2“ ?)

where 6,, 0, 0, are the angles which F4, FB, FFC make with
the axis of the curve.
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But for the centre of the circle passing through 4, B, C,
71 =1y = 75, and from the polar equation of the parabola

dy = m sec*i0, d,=msec*Ll, d,=msec’Ll,
2 b 2 > 2 )

which values satisfy the equation (2) identically ; therefore, &e.
-1=0;if

A
x, y are the co-ordinates of the centre of the circumscribing

2
20. A triangle is inscribed in the conic .?7_2 +
@ b
circle, and #’, 3/ those of the centroid, show that

x/g 72
a

16 (a*a® + 0%y°) + 90“<—2 + %) - 12¢ (w2’ — yy') — ¢t = 0.

21. A triangle is inscribed in a conic so that the circum-
seribing circle passes through two fixed points, one of which
is on the curve; show that the centroid and intersection of
the perpendiculars lie on fixed lines.

Show also, in the same case, that the nine-point and polar
circles have double contact with fixed conics.

22. A triangle is inseribed in a conic U so that two sides
are parallel to fixed lines ; show that the locus of the centre of
the circumseribing circle is a conic having the same centre
and axes as U.

23. If the centroid of a triangle inseribed in a conic lies
on a concentric, similar and similarly situated conic, show
that the nine-point circle cuts orthogonally a fixed ecircle
concentric with the curve. Show also that the area of the
triangle is in a constant ratio to the area of the triangle
formed by the tangents at the vertices.

24. A4, B, C are three points forming a triangle inseribed
in a conie, so that the tangent at each vertex is parallel to the
opposite side ; and P is any point on the curve. I1f P4, PB,
PC meet the opposite sides of the triangle in L, M, XN, show
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that the area of the triangle LMN is double that of the
triangle 4BC.

25. An ellipse circumscribes a fixed triangle so that two
of the vertices are at the extremities of a pair of conjugate
diameters ; show that the locus of its centre is a hyperbola
with regard to which the given triangle is self-conjugate.

26. A conic circumscribes a fixed triangle 4BC'; if the
diameter of the conic parallel to 4B be given in length, show
that the locus of its centre is a conie, whose asymptotes are
parallel to 40, BC, and with regard to which C is the pole
of 4B.

27. A conic circumscribes a fixed triangle so that one of
the vertices of the triangle is a vertex of the curve; show
that the trilinear equation of the locus of the centre of the
conic is

a(a+ B cos C)(Bsin B+ ysinC - asin 4)
~B(B +acos C)(asin A -3sinB +ysinC)=0.

28. A circle 8’ circumscribes a triangle 4 BC inscribed in
a conic S; if ©° ~ 4A0’ = 0, show that the algebraic sum of
the diameters of S parallel to 4B, BC, C4 is equal to zero,
and if 6”7 -4A0"= 0, show that the algebraio sum of the
reciprocals of the diameters is equal to zero, where A, 6, 6/, A’
are the invariants of S and S’ (see Salmon’s Condcs, Art. 371,
Ex. 4).
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II.—CIRCUMSCRIBED TRIANGLES.

29. To find the equation of the circle circumscribing the
triangle formed by three tangents to the conic

2

LA A

R 1=0.

Let S=a*+y* - 22 — 2§’y + k* = 0 be the equation of
the circle ; then, substituting the co-ordinates
acosi(a+f3) Obsinl(a+f3)

cost(a—-)" cost(a-p0)

of the intersection of the tangents

i Ysna-1=0 2% YsnpB-1-=
Jcosat psina 1=0, “cos[3+bsmﬁ 1=0,

in 8=0, we get
a? cos’L (a + 3) + 0*sin* L (a + B) — a2’ (cos a + cos 3)
~ by (sin a+8in (3) + £* cos* L (a— 3) = 0,
or @+ b +k + (a*— 5% cos{a+[3)+ & cos(a - 3)
— 202 (cos a + cos 3) — 20y (sin e + sin 3) = 0. (1)

Now let cosa + cos 3 +cosy =p, sina + sin 3 +sin y =g,
a+ 3+ v =¢, then we have

008 (a + 3) = cos(¢p ~7), cos(a-f3)=3(p"+ ¢ - 1)

—~ (peosy+gsiny),
and (1) may be written

Lcosy+ Msiny + N =0, Q)

(9]
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where L = (¢ - 0*)cos ¢ + Rax’ — k*p, 3)
M= (a* - b*)sin ¢ + 20y - K, 4)
N=a + b -2pax’ - 2qby + L{(p*+¢*+1). (5)

But since (2) is true when v is replaced by a and (3, respec-
tively, we must have L = M = N = 0. Eliminating, then,
@, y’ from these equations, we get

2(a* + b* + (a* — b%) (p cos ¢ + ¢ sin )}
»+g -1

k=

@+ B+ (@~ 07) {cos (a + [3) +cos (B +y) +cos (y +a)}
- 4cos(a—f3) cos (3 —v) cosf(y - a)

» (6)

since p cos ¢ +¢sin ¢ = cos (a+ [3) +cos (3 + ) +cos (y + a),

and p*+¢*-1=4{1-cos’L (a—B3)—cos’L (B -v)—cos’S(y—a)}
~ 805 1(a - f3) cos 1 (B ~ ) cos 3 (y - a).

Hence, finally, we may write the equation of § thus:

2yt - %{kZ(OOSa+cos,8+ cosy) +(@* - %) cos (a+ 3 +7)}

(7

> =

(#* (sin a + sin B3+ sin y) + (a* = 0*) sin (a+ 3 + )}

L =0, )
where 4 has the value (6).

‘We may also find the equation of the circle as follows:—
If R is the radius of the circle, and A, 4, B, C the area and
angles of the triangle, respectively, we have

2= A .
2sin 4 sin B sin C’
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but A=abtan La-f)tan L(B-v) tan L (y - a)
(Salmon’s Conics, Art. 231, Ex. 9),
. 3 absin (3 - v)
and - sin 4 /(@ sin*B+ b* cos(3) (a* siny + b* cos®y)}
sin B = &e.;

hence we have

R _v/l(a*sin’a + b* cos’a) (¢’ sin*(3 + ° cos?f3)(a*sin®y + b cos®y))
4abcos(a— f3)cos &(B —v) cos §(y — a) '
(8)

Now let a, 8, v, «’, 3, ¥" be the perpendiculars from the
foci on the sides of the triangle, then ad’ = (33" = vy’ = 0%,

and «'sin 4+ 3'sin B+ ¢'sin C = %, identically ; therefore
. . . A
0*(By sin 4 + ya sin B + af3 sin C) = Raﬁ‘y;

but By sin 4 + ya sin B + a3 sin C'=-sin 4 sin Bsin (¢*
(Salmon’s Conics, Art. 132, Ex. 2);

hence b*t* = - 2Raf3y; 9)
and, of course, also  8*¢* = -2Rd 3y’ (10)
for the other focus.

Now we have k- 200 + ¢ =t

R+ e’ + ¢t = 7,

and if we express a, 3, y in terms of the eccentric angles, we
get
B b(ccos a - a)
/(@ sin®a+ b cos’a))’
c2

B = &e.;
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hence (9) and (10) become

_ (a—ccosa)(a—c cosf3)(a~—c cosy)
" 2ac08d(a—f3) cosL(B~7) cos 3y —a)

k=2 + ¢

(11)

B4 % 4 o (@ + ¢ cos a) (@ + ¢ cos 3) (o + ¢ cos y)
E ‘ "~ Racost(a—[3)cos L (3-vy)cosL(y—a)

(12)

which give by subtraction

@’ (cos a + ¢os [3 + cos ) + ¢* cos a cos [3 cos y) (13)
4acosd(a—f3) cos (B -y)cost(y—a) ’

’

which is equivalent to the value already obtained. By sym-
metry, then, or by means of the imaginary foci, we arrive at

, bU(sina+sinf3 +siny) - ¢* sina sin 3 sin y
~ 4bcosd(a—f3) cos L (3 - y)cos Ly — a)
Also adding the equations (11) and (12) we get

kz_a2+62(00SaCOSB+COSBOOS’y+COS’yOOSa) &
T 2oost (@-P)eos (Boyoosd (yca)

From (9) and (10) we get at once
£ ¢ = 40" R?, (15)

(14)

the invariant relation connecting the circle and the conie.

‘We can obtain an expression for the radius of the circle
in terms of the distances pi, pz ps, p1's P25 ps of the foci from
the vertices of the triangle. Let &/, &', ¢/, A’, be the sides and
area respectively of the triangle formed by the feet of the
perpendiculars from a focus on the sides of the given triangle;
then, since the auxiliary circle of the conic passes through
the feet of the perpendiculars, we have

a'b'c =4al’;
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but @ =pi sin 4,V =p,8in B, ¢ =p;sin O,

and 2A" = - sin 4 sin B sin OF
(Salmon’s Conics, Art. 125).

Hence pLpzps = — 2at’, (16)

and similarly for the other focus,

pipd pd =~ Rat”;
therefore from (15)
2 _ P1P2p3 1 P2 Py
= 1662 6*
30. To find the equation of the polar circle of the triangle

formed by three tangents to the coniec
$2 !/'.’,
;2‘ + ?)—2‘ - 1 =0.
Let the equation of the circle be (v —2")*+ (y —%")*=7°=0,
and let 2/, be the co-ordinates of the centre of the circum-
seribing circle, and a, 3 those of the centroid; then, by a

known geometrical relation, we have

o'=3a -2, y'=33-2y.
3a _cosj (a+f3) cos%(ﬁ+7)+cos%(y+a)
a cos}(a=-P) cosy (B-7y) cosi(y-a)

3 (cos a+cos 3+cosy) +cos (a+[3+y) +4cosacos (3 cosy,
= o

4cos ) (a—B)cosd (B -vy)cosd(y—a)
hence, substituting for #/ from Ex. 29 (13), we get

But

x,,_az{cosa+cos,3+cos'y—cos(a+ﬁ+'y)} + 2 (a®+ %) cos o cos B cos y
- 4acosy (a—B)coss (B—y) cos¥ (¥ — a) ’

and, similarly,

. _ b*{sinat+sinB+siny+sin(a+B+7y)} +2(e+ 6% sinasinBsiny
- 4bcost(a—B)cost (B~ cosy (y—a) ’

Y
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Also the absolute term a” + y” —»* = a* + b*; for by the
invariants we know that this circle cuts orthogonally the
director circle (Salmon’s Conics, Art. 875, Ex. 4).

If » be the radius of this circle, and ¢, ¢, ¢ the lengths of
the tangents from the vertices of the triangle to the director
circle, we have

7 =—2A cot 4 cot B cot C';
t?
but cot A = mm, cot B = &e.

(Salmon’s Conics, Art. 169, Ex. 3) ;

and A=abtani(B-y)tan 3 (y-a)tand (a - G);
theref L
erefore 7% = - oo

For the ellipse, if r is real, one of the quantities #, #, ¢ is,
of course, imaginary.

For the parabola, y* - 4mz = 0, we find

o 192]73’
m
where p,, p., ps are the perpendiculars from the vertices of
the triangle on the directrix.

31. The circle circumseribing the triangle formed by three
tangents to a conic passes through the centre of the curve;
show that three extremities of the diameters parallel to the
tangents lie on a circle passing through the centre of the
curve.

32. If the nine-point circle of the triangle formed by

2 2

three tangents to a hyperbola 22 - ?Z_z
the centre of the curve, show that the centre of the circum-
@

b — = 4.

a?

-1 = 0 passes through

scribing circle lies on the confocal hyperbola
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33. Show that the polar circle of the triangle formed by
three tangents to an equilateral hyperbola touches the nine-
point circle of the triangle formed by the points of contact at
the centre of the curve.

34. Given a triangle circumsecribed about a conic and the
length of the axis major, show that the locus of the foci is a
curve of the sixth order, of which the vertices of the triangles
are nodes (see Ex. 29 (16)).

35. To find the locus of the centre of the circumscribing
circle of a triangle circumseribed about a conic S, and in-
seribed in a conic S,

It may be shown by the invariants that, if a triangle be
circumseribed about a conic S, and inscribed in a conic §’, it
is also self-conjugate with regard to another fixed coniec.
Taking the values for S and §”in Salmon’s Conics, Art. 376,
we find the following value for the covariant I:

F=—4(gha® + hfy* + fg=°) + 4 (f+ g+ h)(fys + gz + hay),

from which it is evident that gha* + Afy* +fg2* = 0, being ex-
pressible in the form 27— 68’ = 0, represents a fixed coniec.
Let us put

‘ xz yz ’ 4 ’ 7 7’
8= &—2 + ﬁ_la S’:(a, b9c’f,’ g, h) (x’ Y, 1)2;
then if we substitute the co-ordinates of the intersection of
the tangents

z Y . z Yy .
Z z ~1= Z Z -1=0
L cosa+ysina 1=0, acosﬁ+bsm,8 1=0, (1)

in 8" =0, we get
(da* —V'b* + ¢) cos a cos 3+ (V'0* - d'a* + ¢) sina sin 3
+ d'a?+ b6+ + 2K ab sin (a +[3) + 2¢'a (cos a cos [3)
+2fb(sina +sin 3) = 0.
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But this relation evidently expresses that the tangents (1)
are conjugate with respect to the conic whose tangential
equation is

@@=V + )N+ (00 —d'a* + )b+ (da* + 0D+ ) v?

+ 40 a*bAu — 49’ v — 4f DPuv = 2 =0 Q)
and triangles circumscribed about S and inscribed in 8" are
then evidently self-conjugate with regard to =. Now, since
the circumscribed circle of the triangle cuts orthogonally the
director circle of =, we have

(@a* + 00 + &) (& + y*— 1) + 4(ga’x + ' 0y)

+ @+ ) + (@ - 0) (da* - 0% =0, 3)
where z, y are the co-ordinates of the centre of the circum-
sceribing circle, and # is its radius (Conics, Art. 294, Ex.).
We have also from Ex. 29 (15) #¢* = 46°+*, or

@+y+a+ 0 - W)Z =4 (a*@* + 0*y* + a*0%); 4)
hence, eliminating » between (3) and (4), we obtain
2g' ax + Rf by — a®b* (& + ¥))?
=(@a® + U0 + P a* + 8y + @ b7). ()

If @'a® + b'8* + ¢ = 0, this conic becomes the square of a
line, and in no other case will its discriminant vanish; for, if
we form the discriminant of (5), we get, after dividing by
(@a* + 0" + ¢)4,

(@a + VY + ) = 4a* g + 40° f"* + a*b* (o + V)7,
and this combined with the invariant relation connecting
S and §’, viz.,
(@a* + 00 + ) = 4a*b* (@' — W) + 4a*g” + 40°f7,

gives (¢’ — V')* + 44" = 0, whence o’ = ¥, ' = 0, or §” must be
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a circle, in which case, of course, there is no locus. If /=0,
da® + V0 + ¢ = —i—ggﬂl,

\/ (az _ bz)

the locus becomes a circle.

86. To find the envelope of the circle circumscribing a
triangle circumscribed about a conic S, and inscribed in a
conic 8.

By the preceding example the ciroumscribing circle cuts
orthogonally the circle (3), and has its centre on the conic (5);
its envelope is, therefore, a bicircular quartic: a curve which
is usually defined in this manner.

‘When the circle (3) and the conic (5) have double contact
with each other, it can be shown that the quartic breaks up
into two circles. If C is the circle (3) taken so that the coef-
ficient of 2* + 3° is unity, two chords of intersection of (3) and
(5) are easily seen to be y* + (v + ¢)* — C' = 0, from which it
is evident that (3) and (5) will have double contact, if the foci
of 8 lie on C; in fact, putting

C=a"+y* - 20y - ¢,
the conie (5) becomes
B+ )y - a*C =0,

and the envelope then breaks up into two circles passing
through the foci. When C passes through the foci, we must
have from (3),

g'=0, (& + 0% ¢+ (a* = b*) (a'a* = U'0%) + (a* = b*) (d'a*+ 00" + &) = 0,
or ¢+ (aF-0)d =0,

from which it follows that S” must pass through the foci of S.
Hence, if a triangle be circumscribed about a conic §, and
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inscribed in another conic passing through the foci of S, the
circumseribing circle will touch two fixed circles also passing
through the foci of S. If S becomes a circle, (3) and ()
have double contact with each other, and the envelope

breaks up into two circles, which agrees with the result of
Ex. 11.

37. To find the locus of the centre of a circle which
touches the sides of a triangle circumscribed about a conic
S, and inscribed in a conic S’

Let (a7, ", ", /" 9", 1) (=, y, 1)*=V = 0 be the equation
in #, ¥ co-ordinates of the conie which we have called = in
Ex. 35 (2); then, if #, y are the co-ordinates of the centre of
the circle, and # its radius, we have

V= (@ + V),

since the circle touches the sides of a triangle self-conjugate
with regard to V (Conics, Art. 375). But we have also the
invariant relation connecting the circle with the conic S, viz.

ab ca cy

Ex. 10 (3), if S’ be written in the form

mZ 2

1
7*"/
a

E‘lzo;

hence, eliminating #, the locus is a curve of the fourth order-
If the conic S” become a circle, the locus is a bicircular
quartic; for if we put
@ +y -1=8,and V=(a, b, ¢ 1,9, k) (9, 1)%

we have, from Euler’s equation, 2* + y* — 1 = 2r, which, com-
bined with V'=1*(a +b), gives (¢ +0) (* + y* -1 =47V.



CIRCUMSCRIBED TRIANGLES. 27

This quartic, when certain conditions are satisfied, can break
up into two circles. Putting 7 = 0, and equating

2 2 2 4 V
(@ +y* - 1) - P

to the product of the circles #* + 4* + pw + k, «* + y* — px + I/,
we get conditions which, combined with the invariant relation
¢(a+b)=f*+ g* + ab connecting V and §’, give the further
relations f =0, g* = a* — b*. 'The latter relations might, of
course, be replaced by g = 0, f* = 0* — a*

38. A triangle is circumscribed about a conic S and in-
scribed in a conic S, having double contact with the director
circle of S; show that the polar circle of the triangle touches
two fixed circles.

If §"is a parabola, show that the polar circles form a
coaxial system.

39. To find the locus of the centre of the nine-point circle
of a triangle circumseribed about a conic S and inscribed in a
conic .

Let il + v
@t b

be the equation of &', and (4, B, C, F, G, H) (A, u, v)* = 0,
the tangential equation of §; then, expressing that the chord

zcos 3 (a +ﬁ)+%sin%(a+ﬁ)—cos%(a—[3)= 0 of 8’ touches
S, we get

%ooszé(a+ﬁ)+—§sin2§(a+ﬁ)+C’eos“’é(a—ﬁ)

1=0

- g(COSa+eosB)——b}—7(sina+sinB)+gsin(a+B)=0,

which, as at Ex. 29 (2), may be written in the form
Lcosy+ Msiny + N =0, (1)
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where
ng+£_2_fp_%€’g+50(pz+qz+l)a (2)
M=<§—§>cos¢+2ﬂ—%{sin¢+27a—op, 3)

But, since (1) is true, when y is replaced by a, 3, respectively,
we must have L = M = N = 0. Now, if #, y are the co-ordi-
nates of the centre of the nine-point circle, we have, from
Ex. 2, (1) and (2),

8ax = (8a* + b*)p — ¢* cos ¢, 8by = (a° + 3b*) ¢ — ¢’ sing ;
hence, from M = IV = 0, we get expressions of the form

z=A+pcos¢ +vsing, y =N +pu cos¢ + v sin g,
from which it follows that the locus is a coniec.

If p =+, v =5/, this conic will become a circle, and

4 B C(axd)
then we have  H=0, R e

If w’ - u'v = 0, the locus reduces to a line.

40. A triangle is circumscribed about a conic S and in-
scribed in a conic S’; show that the nine-point circle cuts
orthogonally a fixed circle.

41. A triangle is circumseribed about a conic § and in-
scribed in a conic 8”; show that the radical axis of the
circumscribing and nine-point circles touches a fixed conie.

42. A triangle is circumscribed about the conic

x? yZ
ﬁ+ﬁ—1:0,

and inscribed in the circle (# — a)* + (y — B8)* = #* = 0; if s be
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half the sum of the angles subtended by the foci of the conic
at the vertices of the triangle, to show that
@+ 3° - 1" - ¢® = 2ar cos s, ¢f3 = ar sin s.

The relation at Ex. 29 (9) is, of course, also true for the
imaginary foci, with the exception that & must be replaced by
a; thus we have a*#* = - 2ra3y. Now, if # cosw + ysin w
- p =0 be the equation of a tangent to the conic, we have
a=p+cs/—1sinw; but p =a cos¢, ¢ sin w = @ sin ¢, where
¢ is the angle the focal radius vector makes with the normal;
hence, a = ae®”~", and similar values for 3, y. Now it can
be shown by geometrical considerations that the sum of the
angles subtended by the foci at the points of contact is equal
to the sum of the angles subtended at the vertices of the
triangle; hence, we have # = Qares’~'; therefore, putting
#=da+(3+cy/-1) and equating real and imaginary
parts, we obtain the results required.

43. To find the locus of the centroid of an equilateral

triangle circumscribed about a conie.
2

2y
Let;+?

- 1=0 be the equation of the conic; then,
from the invariant relation connecting the conic with the cir-
cumseribing circle of the triangle, we have, from Ex. 29 (15),
R 2R (2 +y* +a* + b°) + (" + y2)2 -2 (@ —-y*)+¢ =0, (1)
where R is the radius of the circle, and #, ¥ the co-ordinates
of its centre. Again, from the invariant relation connecting

the conic with the polar circle, we have

2ryt=a"+ 0+ M, (2)
where M is the rectangle under the segments of the perpen-
diculars. But, for an equilateral triangle, M = -} B*; hence,

eliminating R between the equations (1), (2), we get
(B2 + 8y — a@* - b*)2 = 4(a*a + D°y* + a*F%).
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44. To find the equations of the circles touching the sides
of a triangle circumscribed about a conic.
2 2
Let the equation of the conic be j% + %5 -1=8=0, and

that of one of the circles (z — 2')* + (y — ¢/')* — 7* = §'=0; then
the conditions that the line Az + uy — 1 =0 should touch
S and S are
AN+ -1=2=0, @A +yu-1 - (N +pu)=% =0,
respectively.
2

Now, if we form the discriminant of = + % ¥, we get
x/z ?//2 9"2
az—h2+b*—ﬁ2+ﬁ

which is identical with the equation already obtained in Ex. 1

~1=0, (1)

2
for the discriminant of §" - #2S. But, writing = + Zl—z ¥ in

hZ
theform(a?—A*)A* + (0% - P*) u* -1+ = (@' X+ u—1)% we see that

W . . .
when S + - 3 represents two points, these points must lie
’

on the confocal conic (a2 — ) N* + (0* =) u* -1 =0,

@ y* 3
or e 1=0. @)

Hence it follows at once that the extremities of a diagonal of
the quadrilateral formed by the common tangents of S and §”
lie on the same confocal conic, three conics such as (2) corre-
sponding to the roots of the equation (1). TFrom (2), if v be
half the major axis of a confocal conic passing through a
vertex of the triangle, we have 2°=4* —»*; and the equa-
tion (1) then becomes

/2 /2

z Y
St a Tt s
v c -V a — v

-1=0. (3)
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This equation (3) gives the semiaxes v, v;, vy of three
confocal conics passing through the vertices of the triangle;
and from its absolute term we get

ac%’ = V1V2V3, (4)

and similarly from the absolute term of the equation whose
roots are

E v, ¢~ v, E—vi bey =/ (@ 1) (=) (= vi). ()

Also from the coefficient of v* we have
Pyt - =ut vttt —a -

hence the equation

21}] Vo V3 X 2

o "V (@ =) v (@ -y

2t +

+v12+v22+1J32——(l2—02=0 (6)

represents one of the circles touching the sides of the triangle.
If S is an ellipse, these three confocals are hyperbolee for the
circle inscribed in the triangle. If pi, us, us ave the semiaxes
of the three confocal ellipses passing through the vertices of
the triangle, the equation

5 2;1[11153 2 ;
@ty "ﬁa— = 55 v/ (= ) (= ) (¢~ i) y

+,u12+,422+v32-—(b2—-02=0 (7)

represents one of the exscribed circles.
From the absolute term of the equation (1) in 4* we get
for the radius » of the inscribed circle

/@@ =@ - )

ab ’

(8)
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and for the radius # of an exscribed circle,

o= @) — ) (@ =), )
ab

From these expressions for the radii we deduce, if s be
the semi-perimeter of the triangle,

VA (M_zzb— a’)(ps® — a) (10)

By means of elliptic functions the equation of the circle
inscribed in a circumseribed triangle can be written in a form
similar to that of the circumscribing circle of an inscribed
triangle. Putting 2’ = ¢ sin¢, y = b cos ¢ for a point on S,
the equation of the tangent at «/, i/ is

z . Y _0.
asm¢+b—cos¢ 1=0;

and if we suppose this tangent to pass through the point

w=psing, y=/ (& -7) cosy,
on the confocal ellipse
- L 1= 0,

2

oot

V(-

b

we have

L
a

sin ¢ sin ¢ + cosgp cosp =1.  (11)

Comparing this equation (11) with
cos ¢ cos + sin ¢ sin /(1 — A*sin’c) = cos o,

MZ_aZ

.
2 2 7
- C

(12)

we get k=e, sin'c=
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hence we have F (¢) — F () = F (s), and for the other tan-
gent 2 008 ¢’ + % sin ¢'~ 1 = 0 through y F (y) - F (¢') =F (s),
whence RF (Y) = F(¢)+ F (¢). (13)
But if v be the semiaxis of the confocal hyperbola passing

through 2y, we have z = F% = u siny, whence v = ¢ sin

=c¢sn L (u + u) from (13), if we write F(¢) = u,, F(¢') = w..
Thus we have with the usual notation of elliptic functions

4

2
¥ = % Sn 4 (w0 + ) s L (U + ) sn % (s + 00y),

’

2
yY=- 2— en i (u +uw)en L (ug + us) en 3 (us + ),

2
7= % dn i (4, + w) dnd (us + us) dn g (us + o).

From (12) we have

_ay/(1 - ¢ sin’ )  adni(u—w)

COS & end (uy — )’
b
and 2 )= —
v/ (u ) en & (w, — us)’

hence, for an exseribed circle,

dni (u; — ) dnd (. — us) s L (w3 + )
end (uy — up) end (u, — us)

"

’

snd (us + )
end (uy — wp)end (uy — ug)

sni (un — w) sng (us — ug) dn (us + )
end (u — ) end (u, — u)

¥ =0b

H

and similar expressions for the other exscribed circles.
D
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45. Show, by comparing the equations of the circles in
Ex. 1 and Ex. 44, that the points of contact of tangents to a
conic S, which are parallel to its chords of intersection with a
circle S’, lie on confocal conics passing through the points of
intersection of the common tangents of .S and §'.

46. If two vertices of a triangle circumscribed about an
ellipse move along confocal hyperbolee, show that the locus of
the centre of the inscribed circle is a concentric ellipse.

If two vertices move along confocal ellipses, show that
the centres of each of the inscribed circles lie on concentric
ellipses.

47. A circle touches the tangents drawn from a variable
point on a conic S to a confocal conic, and cuts orthogonally
a circle S’; show that its centre lies on a conic passing through
the intersection of Sand S’

48. Given a triangle circumscribed about a conic and a
point on the curve, to find the envelope of the director circle.

If the conic referred to the triangle be written in the
form +/la + /mB3 + +/my = 0, the equation of the director
circle is 76¢ 8, + meaS. + nabS; = 0 (1) (Conics, Art. 383),
where S, S., S; are the three circles described on the sides
of the triangle as diameters. DBut the envelope of the
circle (1), subject to the condition /7’ + /3 + 4/ ny = 0,
is ad’ 8, 8; + b3 S8, + ¢y’ 818, = 0 (2), which represents a
bicircular quartic passing through the vertices and the feet of
the perpendiculars. We can also see that the envelope is a
bicircular quartic, from the fact that it cuts orthogonally the
polar circle, and has its centre on the fixed conic (Conics, Art.
293, Ex. 2)

o/ {ad (b + ey — aa)} +4/ (b3 (cy + aa~ 03)}
+4/ {ey'(aa+ 0B —cy)} = 0. (3)
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When the quartic breaks up into two circles we see from
(2) that these circles must be the circumscribing and nine-
point circles of the triangle. If the fixed point is at infinity,
the quartic can break up into one of the sides of the triangle,
and the circle described on the opposite vertex and the in-
tersection of the perpendiculars as diameter.

To find the point through which the curve passes in the
first of these cases, we express that the radical axis of the
director circle and the circumseribing circle (Conics, Art. 383)

la cot A + m3 cot B + ny cot €' =0

touches the circumscribing circle, when we obtain

/ZeosA+/77zcosB+/7z cos C =

which is evidently the condition that the conic should pass
through the centre of the circumscribing circle; hence, if a
triangle be circumscribed about a conic, so as to have the
centre of the circumscribing circle on the curve, the circum-
scribing and nine-point circles will both touch the director
circle. 'We can verify thls 1esu1t by means of the invariants;

for if we write the eomc - gé -1 =0, and the circumserib-
ing cirele (z — &)* + (y — y )2 -7 =8 =0, we have

@+ %+ @+ 0 - ) = 4 (bY@ D),

which, combined with » +./ (a* + 0*) = /(2" + y'*), the condi-
tion that the director circle should touch S, gives
/2
Qi,, ‘2 — 1 =0; therefore, &ec.
a b
If a tangent to the curve touch the director circle, we can
easily see that it must be perpendicular to an asymptote ;
hence, if a triangle be circumscribed about an hyperbola, so
D2
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that one of the sides is perpendieular to an asymptote, the
director circle will touch that side, and also from () the
circle described on the opposite vertex and the intersection
of perpendiculars as diameter.

In all the cases in which the envelope breaks up into
curves of lower degree, the conic (3) has double contact with
the polar circle ; in fact, putting o =cos 4, 3" = cos B,
v =cos Cin (3), it may be written in the form

a*sin24 + (3?sin 2B + y*sin 2C
- 2sin A sin Bsin O'(a cos 4 + 3 cos B +ycos 0 =0;

and putting o = cos B, 3" = cos 4, ' = — 1 for the point at
infinity on the perpendicular to v, (3) becomes

a2sin 24 + [3* sin 2B + y* sin 20 - 2sin 4 sin B sin Cy* = 0.

49. Given a triangle circumscribed about a conie, and
that a directrix passes through a fixed point, to find the locus
of the corresponding focus.

If p, be the distance of the focus from a vertex 4 of the
triangle, ¢, the angle subtended at the focus by the side
opposite 4, a the perpendicular from 4 on the directrix, and
e the eccentricity of the curve, we have (Conics, Art. 191)

p: S W

éa = py COS ¢ = - s

P203
where S, is the square of the tangent drawn from the focus to
the circle described on the side opposite 4 as diameter, and p,, ps
are the distances of the focus from the other vertices. Now,
if a, 3,y are the perpendiculars from the vertices on the
directrix, we must have la + m{3 + ny = 0, where 7, m, n are
the areal co-ordinates of the fixed point; hence the focus lies

on Ip:* Sy + mp.t S + np* S, = 0, 2)
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which represents a bicircular quartic circumscribing the tri-
angle.

If the fixed point is the intersection of the perpendiculars,
the quartic (2) must be divisible by the circumseribing cirole ;
for a parabola always satisfies this condition, and then the
focus lies on the circumscribing circle. The other factor is
the polar circle of the triangle ; for this circle is orthogonal
to the director circle, and it can easily be proved that a circle
orthogonal to the director circle, and having its centre on a
directrix, passes through the corresponding focus.

If the directrix is parallel to a given line, the locus is a
circular cubic, as may be also proved as follows :—Let #, y, 2
be the perpendiculars from the focus on the sides of the
triangle; a, 3, y the angles between the sides and the given
line; then we have
2+2cxcosa-0*=0,y* +2cycos3-b*=0, 2* +2czcosy - b*=0;
and, eliminating b and ¢ from these equations, we get

zcosa(y’ — =) +ycos B (¥ —a*) + g cosy (#* - y*) =0,
which represents a circular cubic passing through the vertices
and the centres of the circles touching the sides.

50. A triangle is circumscribed about a conic so that the
lines, which are drawn from each vertex to the point of the
opposite side with the circle escribed to that side, intersect on
the curve: show that the circle inscribed in the triangle
formed by the middle points of the sides passes through the
centre of the conie.

51. A conic whose foci are F, F is inscribed in a triangle;
if Flie on the polar circle of the triangle, show that an equi-
lateral hyperbola can be described, having ¥’ for centre, and
passing through the feet of the perpendiculars from F” on the
sides.
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If F lie on one of the circles touching the sides, show
that a parabola can be described having F” for focus, and
passing through the feet of the perpendiculars from F” on
the sides.

52. Show that the intersection of the perpendiculars of a
triangle formed by three tangents to an equilateral hyperbola
and the centre of the circle passing through the points of
contact of the tangents are conjugate with respect to the

curve.
2

2
53. A triangle is circumscribed about the conic Z%Jr%é—l: 0,

so that the radical axis of the circumseribing and polar circles
passes through the centre of the curve ; show that the centre
of the circumscribing circle lies on the conic

@t + Uyt =a* + 0+ @D
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III.—SELF-CONJUGATE TRIANGLES.

54. To find the equation of the polar circle of a triangle
self-conjugate with regard to a coniec.
We have seen in Ex. 1 that when a conic and circle are
',[/2

2
written in the forms S = 2 +=-1=0,
@ b

S8 =@-2V+{y-y)-r=0,
the diseriminant of 8 — 4>, is given by the equation
«Z,Z ?//2 2

az—/z2+bz—h”+7§

~1=0. (1)

But if § and 8 are referred to their common self-conjugate
triangle, we have

_ 1 /ad® sz C'y2
e
g @’ sin24 + 3 sin 2B + y* sin 20 3

N 2sin 4 sin B sin O ’ ®)

where «’, (3, ¥  are the co-ordinates of the centre of S, S being
taken so that the result of substituting these values is nega-
tive unity, and 8" so that the coefficient of * + y* is unity.

But when S and 8 are written in the forms (2) and (3),
the discriminant of S — 7°8” is

(7* + 2R cos A) (A* + 2R3 cos B) (#* + 2R~ cos C),

where R is the radius of the circumseribing circle. This
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equation must coincide with (1); hence, if %* A7, 5’ are the
roots of (1), we have
hthit byt = — 8R*a’ 3y cos A cos B cos C';
but %,k ks = abr, as we have geen in Ex. 1, and
r* = — 4 R? cos A cos B cos C;
theref or - ¥ (4)
erefore = =
o3y
Again, if #,, y,, &c., are the co-ordinates of the vertices of the

Zolls Y23

triangle, we have cos 4 = — va,< T >; therefore

Ii=-2Rd cos A =2Rd [y (’%" + y‘}ff’>= @ + U = @y = Yo
from (4), since
Loy Y2
a* b

hence, since as in Ex. 1,

¥ = L - R @ - ),

N
=1, and @*- A} = e w25, h)F — b = b% YalYs;

2
. ¢
we obtain x = i Gy
CZ
. . /
and, similarly, Y =- b Y2 Ys;
also gyt = =+ 0= (B b+ R

= ¢ (xl% + L3 + x%xl) - (cﬁ + cz).
Thus, finally, the equation of S” can be written

. . 2 2c* N
o+t - p Ty s + m NYalfslY + € (2125 + 2y05 + Ta,)

~(a* + ) = 0.
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55. To find the equation of the circle circumscribing the
common self-conjugate triangle of two conics.

Let S and & be the two conics, then the director circles
of all the conics of the system S + %8 = 0 cut orthogonally
the circle circumseribing their common self-conjugate tri-
angle. But the director circle of 8 + %8 is (Conics, Axt. 294)

ON + 2\ + =0,
where C and ' are the director circles of S and S, and
2 =(ad + bVa - 200) (& +y*) - 2 (Sl + f'h - by - Vg)
=2y (gh + gk - &f" - af)
+(@+b)+e(d +0)—299~2f"

is the director circle of the covariant conic ®; hence we
obtain the equation of the circle required by forming that of
the circle cutting €, ¢ and = at right angles (Conics, Axt.
132, (a)).

56. To find the locus of the centroid of an equilateral
triangle self-conjugate with regard to a coniec.

Let R be the radius of the circumsecribing circle, and »
that of the inscribed circle, then if the equation of the conic is

g+ﬁalzm
we have, from the invariants,
FPryt=at+ 0+ R B+ @y - @t = (0 + 0" = L(e* + 0F) R
hence the equation of the locus is

(a* — 3b) e - (3a* - 0y = (& - b*)%
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57. Show that the circle circumscribing an equilateral
triangle self-conjugate with regard to the conic

x? ?/2
—+=-1=0
6[’2 b2

has double contact with the bicircular quartic

2 2 2 2\2 _ 2 _ 722 z _ yz {
@+ +a@+ 0°) =4 (- 1) FoBE T SR oy

58. To find the locus of the vertices of equilateral tri-
angles self-conjugate with regard to a conic.

2 2
Let the conic be gz + %2 -1=0, and let zcosa+ysina=0,
zcos B +ysinf3=0 be lines through the origin parallel to
the two sides of the triangle which meet in the vertex w,y.
Then, expressing that these sides form a harmonic pencil

with the tangents to the curve from z,y, we get
c0s & ¢os 3(#* — a*) +sinasin 3(y* - b*)—zy sin(a + 3) = 0,
or (@ +y—-a-0b)cos(a—-f3)- (2 -y ) cos(a+f3)
—Rzy sin (a + 3)= 0. (1)

™
But oos(a—B)zcosgz%,anda+‘6=2w,
@ y
a’ . b*
where CcoS w , SIN) (@ = =erse———

w‘Z . yZ I’
a b

2 o

) . ) PN £ AR VAN 7T
Lty 4(r~b)(— + ‘/T>=(m2«y“~c~)<“j - _51>+7Z)7’

at

2 N2 32,0 7° 2
or <{, + ZL\ 8@y + (80 ~ ) 7 . (8a* — 0% i 0,
{ a

which represents a quartic curve with a node at the origin.
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If &> - 30* = 0, the locus breaks up into two imaginary
conics.
For the parabola y* — 4mz = 0 the locus is

y* Bz + Tm) — 4m* (x — 3m) = 0.

59. Given a triangle self-conjugate with regard to a
conie, if a directrix passes through a fixed point, to find the
locus of the corresponding focus.

If a conic be referred to two lines @, y, at right angles to
each other through a focus, and y the corresponding directrix,
the equation of the curve is #* + y* = ¢’y*; hence, if two
points are conjugate, we have w2, + 919 = €1y, Which
may be written S;=¢*3y, where 3,y are the perpendi-
culars from the points on the directrix, and S; is the square
of the tangent drawn from the focus to the circle described
on the line joining the points as diameter. If, then, we are
given a self-conjugate triangle, and a directrix pass through
the fixed point determined by the equation la + mf3 + ny = 0,
the corresponding focus will lie on the bicircular quartic

18,8, + mS, S, + nS. 8, = 0.

This quartic coincides with the envelope of the director
circle in Ex. 48, and will break up into circles in the same
cases.

60. Given a self-conjugate triangle with regard to a
conic: if a directrix touch a conie U inscribed in the triangle,
show that the corresponding focus lies on the director circle
of U.

61. A triangle is self-conjugate with regard to a conic;
show that the feet of its perpendiculars form a triangle cir-
cumseribed about a confocal conie.
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62. Given a self-conjugate triangle with regard to a
conic, and that half the length of the axis major is equal to
the radius of the polar circle, to find the envelope of the axis
minor.

If two points are conjugate with respect to the conic

2 2

a2+32"‘1=0,

we have

ne Yy
- b

IR
or &, + Y1l = b* + 6’2%1:&‘2,
which may be written S; = * + ¢’ 3y, (1)

where S; is the square of the tangent drawn from the centre
to the circle described on the line joining the points as
diameter, and 3,y are the perpendiculars from the points
on the axis minor. Now, if 4, B, €' are the angles and A
the area of the triangle, we can verify the following identical
relation:

S;tan 4+ 8,tan B + S;tan O =2A + ¢* tan A tan Btan C, (2)

where ¢ is the tangent drawn from a point to the circum-
seribing circle of the triangle. DBut # = a* + 8%, since the
circumseribing circle cuts the director cirele orthogonally ;
and »* = — 2A cot 4 cot B cot O, where r is the radius of the
polar circle; hence, from (1), and similar relations for the
other sides, (2) gives

2A

-2
¢ »
and the envelope, putting » = a, is

By tan 4 + ya tan B + of3 tan C = 0, (3)

By tan 4 + ya tan B + a3 tan C' =
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which represents a conic inscribed in the triangle and concen-
tric with the circumseribing circle.

63. Given a self-conjugate triangle with regard to an
ellipse, and that the latus-rectum is equal to the radius of
the polar circle, show that the major axis touches a conic
confocal with the conic (3) in the preceding example.

84. A circle S touches the sides of a triangle self-conju-
gate with regard to a conic U; show that the centre of S lies
on the equilateral hyperbola having double contact with U at
a pair of points which lie on a tangent to S.

65. A circle S touches the sidg)s ofza triangle self-conju-

gate with regard to a conic U Ez—; + %/)—2 -1=0; if the tan-
gents drawn from the centre of S to U touch at the points
P, Q, show that the tangents from P, @ to the confocal conic

2 1
P T all touch S.

66. If circles touching the sides of triangles self-conjugate
z Y
at b
on a fixed line, show that they have double contact with a
fixed conic whose foci are the points where the fixed line
meets U.

And, conversely, if a circle have double contact with U,
the chord of contact being perpendicular to the transverse
axis, show that it is inseribed in triangles self-conjugate with
regard to the conic

b* (2* — ) —a*y* + 2fy =0,

with regard to the conic U= -1=0 have their centres

where f is an arbitrary constant.
67. A circle is inscribed in a triangle self-conjugate with

2 .2
regard to the conic U = 22 + Yo 1= 0, and has its centre on
a b



46 SELF-CONJUGATE TRIANGLES.

the director circle of U'; show that it touches the conic
A 1
@B @

68. If two circles touch the sides of triangles self-conju-
gate with regard to a conic U, show that their centres of
similitude are conjugate with respect to U.

69. A circle inscribed in a triangle, self-conjugate with
regard to a hyperbola, cuts the hyperbola orthogonally at
a point P ; show that P must be the point of contact of
a tangent perpendicular to an asymptote.



IV.—TRIANGLES FORMED BY TWO TANGENTS AND
THEIR CHORD OF CONTACT.

70. To find the equation of the circle circumseribing the
triangle formed by the tangents drawn from the point #, y

2 2
to the conic % + % —1 =0, and their chord of contact.

The equation of the circle must be of the form

!

|

@

1S

2 2 yod 1)
2+%—1+(lx+my+n)<m;+yl— >:O. (1)

Substituting in this equation the co-ordinates of the point
Z,y, we get n=— (I + my + 1), and the conditions that (1)
should represent a circle give

y md 1+ 1+my

+—=0 A .
v a* ’ @ 2

Hence the equation (1) becomes

ab<m+b4><a2+b2 +c

w gy @7+ Y

[ U . A §

a* b? ¢? y

N

7o 79 o ’
FAR . i oy, )
or <——a2 + “’b—g > (@4 9) = (g o) - Jb_/“ (@2 + = ¢
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Also, if R be the radius of the circle, we have

72 72\ 2 /2
4R <%2_ + ‘%_2> = %Z (x’2+ y'z + ‘02)2 + % (ﬁﬁ"z + ?//2 - 02)2

xlz y/z /x/z _‘2/2
-4 (y - ?)W v

a”* y,z 2 2\ 2 2 (.2 2 4
(B Sl ey - 20 -y + e
hence oR = PP J(”i N Q-) 3)
x/z gfz a4 b4. )
@

where p, " are the distances of o/, 3 from the foci. If 0 is
the angle under which this circle cuts the director circle, we
have

2 gf_g/_’i = x—'z ?/;2 2 2 ¢ 2 2)1.
c<a2 bz>—(a2+bz>{a +b* = 2R cos 0,/ (a* + b)};

therefore, from (3),
(@* + b)) p*p’ cos* 0 = 4 (b*a” + a*y”),

( 2 22
or p'psin?l = (2" +y”? - a* - ) &+ Y - %—2%—){
Hence, if /, 4’ lie on the director circle or the inverse of
the director circle with respect to the circle described on the
line joining the foci as diameter, the variable circle touches
the director circle.
71. Since the equation (2) in the preceding example is

ca -

unaltered, if we substitute -.———, ———— for #/, y’, respec-
¥ ry?at+y

tively, it follows that two points connected by the reciprocal

relations @y, + y.. = 0, w2, — 4,9, — ¢* = 0, and the points
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of contact of tangents from them to the curvelie on the same
circle. If we suppose one of these points to lie on the curve,
we see that the circle passing through any point P on the

quartic
2

2
(@ + )’ - ¢t <% + %>= 0,

and the points of contact of the tangents from P, touches the
curve.

72. From the equation (2) we can readily find the in-
variant relation connecting the circle with the curve. If we
make the equation (2) identical with #*+y*—2ad—23y+4*=0,

da® (2P +y 4+ ¢)?

we have Fid PO
202<—‘; + —)
o b?
4b262 o ($,2+:1//2— 02)2
k= ¢ - 2? yfz )
2¢* <;2' + Z{)
72 79
@+ 0+ E= 2—5%-);
P
prp b* (3
hence Fid TR 3 (@ + 0+ E).

This is the same equation as that which would be obtained
by expressing that the roots of the equation (10) in Ex. 1
are connected by the relation A* + £° = A5

73. The circle passing through a point P, and the points
of contact of the tangents from P to a conic, cuts orthogo-
nally a fixed circle J; show that the locus of P is a circular
cubic, and that of the centre of the circle a cubie.

E
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If J passes through the foci, show that P lies on a circle
passing through the foci, and the centre of the circle on a
fixed conic, both of the loci, in this case, being divisible by
the axis major.

74. The circle passing through a point P and the points
of contact of the tangents from P to the conic

B .’)92 ?/2 B
V= Gt 1=0
has its centre on the director circle of 77; show that the
locus of P is the bicircular quartic
(@ + 1*) — 2% (3d* — b?) — 2p* (30* — &) + (&% - 1*)* = 0.
75. To find the co-ordinates of the centroid of the tri-
angle formed by the tangents from <, y" to the conic
x? yZ
;2 + F - 1 =0

and their chord of contact.
Let a, 3 be the co-ordinates of the middle point of the
chord of contact, then we have

3r=2a+a, Sy=203+19;

but it can be easily seen that

7 ’
z Y
a= x’? ?//2’ B = x/z :l//z
—_:f—‘—ﬁ —(6—2—*‘—6—2’
1,/ 2
hence we have v=3a 1+ ==\,
oy
7

P) 1)
1 /
y=§y<1+;r7?>
+
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If the centroid of the triangle lies on the curve, we find

xQ ?/2
55 + —b—z' - 4 = O
for the locus of «, ¢/, after dividing by the equation of the
curve.
76. To find the co-ordinates of the intersection of the

perpendiculars of the triangle formed by the tangents from

2 2
@, y to the ooniogi2 +% -1 =0 and their chord of contact.
a0

Let 2,7 be the co-ordinates of the centroid, and w, ¥,
those of the centre of the ecircumscribing circle, then we
have, by a known geometrical relation,

@ = 3a, — 221, Y = Sy>— 2,

where », y are the co-ordinates of the point we seek.
But #,, ¥, are expressed in terms of «/, " in Ex. 70 (2),
and #;, 4, in Bx. 75 (1); hence we obtain

/ 2,2
@ ¢y

@+ 0+ =
a~< b/,

o>y
a b

y/ S
ZTZ <a2 + 0 - 7 )

x’Z + y'z

@ v

Since from the equations (1) we have w2’ + yy' =a? + 8,
it follows that these two points are conjugate with respect to
the director circle.

X =

1)

y:

2 2
‘We have also ava - ]?l/y —¢=0;

hence if we are given », y, we determine #’, 5" as the inter-
E2
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section of the polar of z, y with regard to the director circle
and the equilateral hyperbola which passes through the feet
of the normals to the curve from =,y (Conies, Art. 181,

Ex. 1).
77. Tangents are drawn from a point of the curve

2

P 2%y
(a + bz) (_4 b4> _(az _ bz)2 (W =

to the comnice U= zﬁ —2 -1=0;
a b

show that they form with their cord of contact a triangle
whose intersection of perpendiculars lies on the director circle
of U.

78. To find the equation of the polar circle of the tri-
angle formed by two tangents to a conic and their chord
of contact.

The co-ordinates of the centre are given at Ex. 76 (1),

and we ﬁnd the absolute term by expressing that 2/, 5/ is the
pole of Z 4 yl‘z -1 = 0 with regard to the circle; hence we
find for the equation sought—

/2 23 / 9%/ 2,./2
<x i;>(0€ +/2)—2—x<a +bz+c§/ >x——b‘7—/2—<a2+62—07‘;—)y

b,
+a* + b + ax2+—b—2y =0. (1)

If » is the radius of the circle, we find then
, , 2%y ctaly
azbg(xz_'_?/z_az_b?) —_ 3 -
at bt a’ b® @

LAY
a b

=

)
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The equation (1) can also be written in the form

cy” ta?

1 2 2 . /\2 1<2 2 a7 \2
55((4 + 0% + 7 >(x—x)+5§ @+ 0 - - y=-y)

xz 2
+ (@ +y* - a® - 62)<E+% - 1>= 0,
which gives the equation of a pair of chords of intersection
of the circle and conic. If the conic is an ellipse, these chords
never meet the curve in real points.

79. To find the invariant relation connecting a conic and
the polar circle of the triangle formed by two tangents to the
curve and their chord of contact.

If we make the equation (1) in the preceding example
identical with

2+t —Rax - 2By + K =0, (1)
2,72 2 /2
a2+b2+%y2— a2+b2—-cﬁ
we get :IGZ - bz = W, k - (l2 = x’z ) 5
P T
s 3 pl @+ 0+ )
therefore re - 952.< - /262 ,
B-b0 a z Y
R
C2$/2
bZB? y’Z <a2 + bz 2 >
2 2T 72 72 7 ’
E—-a b a* N gz_
@ v*
2 2 b2 2
hence % + k—f}—“ =a+ b (2).
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We can find this relation also as follows :—If two conics
can be reduced to the forms aa® + by? + ¢z = 0, &* — 2y = 0,
they must be connected by the invariant relation ©6"-AA"=0,
or two roots of the equation AA® + OF* + ©'k + A" = 0 must
be equal with opposite signs. Expressing, then, that two
roots of the equation at Ex. 1 (10) are connected by the rela-
tion %,® + A* =0, we obtain the relation (2); hence if the
circle (1) cut orthogonally a fixed circle J, the locus of its
centre is in general a cubic. If J passes through a pair of
vertices of the curve, the locus reduces to a conic; for putting

rP=a+y -2By-a*, or k=20y+da,
we get from (), after dividing by 7,
oo (2 52?/> ,
@t = a+ b0 — = |(¢ = 203y).

If the circle J is concentric with the curve, the locus is
the conic obtained by considering % as a constant in the
equation (2). This conic, it may be observed, touches the
tangents of the given curve which are perpendicular to its

at + bt + a*b?

asymptotes, and if £ = will coincide with the

given curve.
80. Tangents from a point P to the conic

s% + %2 -1=0
form with their chord of contact a triangle whose intersection
of perpendiculars lies on U ; show that P lies on the inverse
of U with regard to its director circle.
Show also, in the same case, that the polar circle has

double contact with the bicircular quartic

(z + 4+

@+ b a b s g
———> =4 (@2 + U’yP).

@+ b
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81. If the polar circle of the triangle formed by the

2 2
tangents from , y to the conic U = g; + %5 -1, and their

chord of contact, cut the director circle at an angle 0, show
that

m2+y2—a2—bz

2 2 4 102 5,2
4a*0* (a® + b%) <% + %{; - C%)

cos® 0 =

82. A point P moves along a fixed parallel to an axis
of the conic; to find the envelope of the polar circle of the
triangle formed by the tangents to the curve from P and
their chord of contact.

Putting 2" = a a constant in the equation, Ex. 78 (1), we
see that the circle cuts orthogonally the fixed circle

2

x2+y?~a¥x—bg=0, (1)
a
and, eliminating " between the co-ordinates of the centre,
we find that the centre lies on the fixed conic

at + a* b’
A+ 0y + at - bt - {cza +

x=0; (?)

a

hence the envelope is a bicircular quartic.
2
If we put a= % for the directrix, the circle (1) and the

conic (2) have double contact with each other at two points
on the directrix, and the envelope then breaks up into two
circles. These two circles are imaginary for the ellipse.
If &*(@* + 0°) — ¢ a® = 0, the equation of the circle becomes
. . R .
@yt — (@ + )+ a® =0, (3)

4
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which is altogether fixed ; hence we infer that the tangents
to the curve from any point of either of the lines

av/ (@ +0) tex=0

form with their chord of contact a triangle whose intersection
of perpendiculars is the fixed point

x’=i§/(az+ ), ¥ =0.
The rectangle under the segments of the perpendiculars is
4

also given in this case, being equal to

a
The circle (3) has double contact with the curve, and is
always imaginary.
The same property holds, of course, also for the lines
V(o + ) + ¢yt =0;
and the equation of the corresponding circle is, then,

Py e 2/ (B - § =0, @)

These lines and the corresponding circles are real for a
hyperbola whose director circle is imaginary.

It may be observed that the curve is its own reciprocal
with respect to one of the circles (3) and (4); for the polar of
any point #, 4/ with regard to the circle (3) is

e+ yy + 2/(a2 + )@ +2) + a* =0,

and this line, subject to the condition

22 ?/2
— _'_ i
o B

is a tangent to the curve. This is, of course, also evident

-1-0,



AND THEIR CHORD OF CONTACT. 57

from the fact that one tangent, and the point of contact of
the other, are polar and pole with regard to the circle.

83. Tangents are drawn from any point of 2y —ay—(B2=0
to the equilateral hyperbola #* — 3* - * = 0; show that they
form with their chord of contact a triangle whose polar circle
cuts a fixed circle orthogonally, and has its centre on the
equilateral hyperbola

2 =y — Laz + 23y = 0.

84. Show that the equation of the nine-point circle of the
triangle formed by the tangents from #/, y to the conic
w? yz
;2 + ﬁ - =0

and their chord of contact is
2y xx
2<Zz—2 + —b;>(x2 + ) - -

’ 23
-5 {y + @) 4 B0+ “2}”’2 +y a0 =0,

2
a* + (2a* - %) ?2_2 + 3a® + b*

85. To find the locus of the vertex of a triangle formed
by two tangents to a conic and their chord of contact, if the
centre of the inseribed circle lies on the curve.

If a and 3 are the tangents, and v their chord of contact,
the equation of the conic must be capable of being written in
the form a8 - ky* = 0. But a = 3 =y for the centre of the
inscribed circle ; hence we get £ = 1. Substituting, now, for
a, 3,9, # cos a + y sin a — p, &c., we must have a3 - v* iden-

2,2
tical with :a% + ‘% ~1=0; hence, equating the coefficient of

2y to zero, we see that the base and one of the bisectors of
the vertical angle must make equal angles with the axis.
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But % + “7%_/—02 -1=0, being the tangent to a confocal

conic through «, 7/, is a bisector of the vertical angle, and

this line and %ﬁ— + yblf ~1=0 must be equally inclined to
the axis; thus we have
@ (@ = 0)
T

or the locus is the confocal conic
2y @ - b*
@ U oa+ b

Since the equation af3 y* = 0 is satisfied by a = 3 = - v,

we see that the centre of the circle exscribed to the base is

also, in this case, situated on the curve.
2 7 b?y’

(1)

The equation ‘ — ¢* = 0 represents the equila-

ey

teral hyperbola which passes through the feet of the normals
from #/, y to the curve, and if the polar Z—xz + @%— -1=0 of
@,y cut this hyperbola orthogonally at , ¥, we must have

x/zyz _ ?/'zxz =0,

Taking the factor 2’y + 9’z = 0, we find that 2, " must
satisfy the equation

'

2

y ¢

o
@V @+

which coincides with the conic (1) ; hence we see that, in the
above case, the base is normal to the equilateral hyperbola
which passes through the feet of the normals to the curve
from the vertex of the triangle.

86. In the preceding example show that the product of
the diameters of the curve parallel to the tangents is equal
to the square of the diameter parallel to the chord of contact.
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87. From a point #/, y’ tangents are drawn to a conic,
to find the co-ordinates of the focus of the parabola having

double contact with the curve at their points of contact.

Let m_2 +7_1=0 be the equation of the conic; then
a b

@A+ Y+ v +E(@N+00—2v)=0

is the tangential equation of a conic having double contact
with the curve at the points of contact of the tangents from
#,y’; but for a parabola the coefficient of »* must vanish,
whence 4 =1, and

@+ a )N+ + )t + 2y A+ 2 v + 2y v = 0

represents the required parabola; hence, to determine the
foci, we have (Conics, Art. 279, Ex.)

Ry —2e+d* -yttt =0, dy+yr-oy =0;

, (@® + 9 + &)
ey Y

(.72 /2 2
2 +y*—~¢
therefore 2 = 1n / \———‘/————)
2%+ oy

b 2'1/='i/ x/z + 2//2

From these expressions it follows that if the vertex of
the triangle be fixed, and the conics belong to a confocal
system, the foci of the parabolse will remain fixed.

If «/, 4/ lies on a line through the centre of a concentric
circle, #, y lies on a confocal conie.

Given z, y, we determine ', 3 as follows :—Let a confo-
cal hyperbola be described through #, y, then the tangent to
the hyperbola at @, y intersects its asymptotes in the cor-
responding positions of 2, y/'.

88. From a point 2, 3 tangents are drawn to a conic;
prove that the centre of the equilateral hyperbola, having
double contact with the curve at their points of contact, is
the inverse point of &’ #’ with regard to the director circle.



(60 )

V.—CIRCLES HAVING DOUBLE CONTACT WITH THE
CURVE.

89. There are two systems of circles having double con-
tact with a conie, the chords of contact of each system being
parallel to one of the axes of the curve.

2 2

If % + %2— 1=0 is the equation of the curve, and #—2'=0
that of a chord of contact, the equation of the corresponding
circle is

2+ Yt -2 e+ -0 =03 (1)
and if y —y = 0 is the chord of contact, the corresponding
circle is

’ 7%
2%—%—&‘%:0. ()

If « is the abscissa of the centre of the circle (1), and r its
radius, we find

2+ + 2

9

e
Srm=L 3)
and if 3 is the ordinate of the centre of (2), and #” its radius,
7./2 2
i % = 1. 4)

We may conveniently satisfy the equation (3) by assuming
a=ccos B, r=~0bsinb.

From the equation (4) we see that the radius of a circle
of the system (2) is in a constant ratio to the distance of its
centre from either of the foci.
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90. To find the differential equation in elliptic co-ordi-
nates of the system of circles having double contact with a

conic.
If we write the equation of the circle (1) in the preceding

example in the form
2 + 9 — 2 cos 0 + ¢ cos® O — b*sin® 0 = 0,
and transform this equation to elliptic co-ordinates by assuming
Z+ Y=+ -, =,
we get W+ v = 2uv cos 0 — a* sin® 0 = 0,
which is equivalent to the relation
cos“% + cos™ g =0; (1)
hence, by differentiation, we obtain
e, dv
V(@ =) T /(@ =)
From this equation we see at once that the two circles of
the same system which pass through a point are equally

inclined to the confocals through the point.
In a similar manner we find that

= 0. @)

,udy vdv
T =) * e e-a 0 @
is the differential equation of the second system of circles.
91. To find the angle between two circles of the same
system which pass through a point.
If », #, are the radii of the circles, and ¢ the distance
between their centres, we have

B a@? = (ry — 1y)*
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where ¢ is the angle sought. DBut
ri=>bsinb, 7 =0bsinb, d=c(cosf, —cosb);
and from (1) in the preceding example we have
u=acos L0, - 0), v=acosk(0 +0); (1)

@ = ) (¢ =)
p =) (@ =)

hence tand ¢ = \/ ( )
We could find this expression at once from the differential
equation ; for when two curves are represented by the diffe-
rential equations Pdu + Qdv = 0, the angle ¢ between them
is given by

whence from Ex. 90 (2) we have the result already obtained.
From (2) we get
Vo + (@ + ) y* — b

cos ¢ = Fop ,
2 2
cy J(l _fﬁ - %ﬂ’)
and Sin ¢ = 20+ e
4 b PP

where p, p” are the distances of #, y from the foci; hence,
being given the angle between two circles of the system, the
locus of their intersection is a curve of the fourth order of
which the foci are nodes. If the angle is right, the locus is a
concentric conic passing through the foci.

In a similar manner for the other system of circles we find

RVA, :
o/ (=0 ®)

tan 1 ¢ =
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and sin ¢ = 26 “ \/\a )

/
cr .
= gina
a* ’

where a is the angle between the tangents to the curve from
#, y (Conics, Art. 169, Ex. 3, and Art. 226, Ex. 12).

From these values it readily follows that the circles
described through any point P on a directrix, to have
double contact with a conic, are at right angles to the tan-
gents from P.

92. If ¢ is the angle which an external common tangent
of two circles of the system makes with the axis, we have

ri—7,  b(sin 0, — sin ) b

ind = _? Vot
siny d ¢ cos 0, — cos 0, ¢ cot 3 (6, + 6)
L by
o/ @ =)

from Ex. 91(1);

hence, supposing the given curve to be an ellipse, the exter-
nal common tangents are parallel to fixed lines when the
intersection of the circle lies on a confocal hyperbola.

93. If n circles having double contact with a conic form
with a single point of intersection of each a polygon, n —1
of whose vertices move along confocal conics, the n vertex
will also move along a confocal conie.

If 6, 0. . .. 0, are the parameters of the » circles, we
see from Ex. 91 (1) that we must have

0, — 0, = a constant, 0, — 6; = a constant, &c.,

whence 0, - 0, is given, which proves the theorem. For a
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triangle the semiaxes g, s, ps of the three confocal conics
are connected by the relation

@ —a(w®+ pd + pst) + 2uupeps = 0.

94, If d is the distance between the centres of two circles
of the same system, we have

d = ¢ (cos 0, — cos 0) = — 2¢ sin § (0, — 0;) sin £ (6, + 6,)

=2 @ - - )

2bc AT
—7'@‘&"ﬁ>

From this expression we see that the theorem in the last
example is also true if we substitute for confocal conics
¢ concentric, similar, and similarly situated conics.”

95. If A4, B are the base angles of the triangle formed by
the centres of two circles of the system at Ex. 89 (1), and a
point of intersection, we have,

ritry=d  bu+ca/ (@ - u?)
rotratd  bp—c\/(d®— @)

from Ex. 91 (1),
tant 4 by +cy/(a* - 2)
tanlB  bv—c,/(a* - 1)’

tan} 4 tan L B =

and

hence we see that either the product or ratio of the tangents
of half the angles 4 and B is given, when the intersection of
the circles lies on a confocal conie.

This property is, of course, also true for the system of
circles which touch the curve externally (Ex. 89 (2)); and
since these circles become tangents, when the curve degene-
rates into a parabola, we see that, if tangents to a parabola
intersect on a confocal parabola, the product or ratio of the
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tangents of the halves of the angles which they make with the
axis of the curve is constant.

96. Given the difference of the angles 4 and B in the
preceding example, show that the locus of the intersection
of the circles is an equilateral hyperbola passing through the
foci.

97. If », o are the abscissae of the centres of similitude
of two circles of the system at Ex. 89 (2), we have

o 18t e cos % (0, - 6.)

r+r  cosi (6 +6,)

,cosF (0 +6,)
and @ _cc—_—os%(ﬂl—oz)’

therefore @z” = ¢*, or the centres of similitude are harmoni-
cally conjugate with the foci.

For the second system of circles we find, similarly, yy'=~¢%,
from which we see that the centres of similitude of two circles
of this system subtend right angles at the foci.

98. If ¢, ¢" are the angles which the tangents from the
foci to a circle of the system at Ex. 89 (1) make with the
axis, we have

sin ¢ = __bsind —étanlo
¢“c+a_c(l+cos0)~c 2%
. b
and sin ¢’ = - cot % 0;
2
therefore sin ¢ sin ¢ = it

hence, if ¢ < 1, one or other of the tangents is always
imaginary.
¥
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99. If we seek the intersection of the circle

7 Q1
x2+g/“+202~y—y—<a“+cy>=0

0 b
with an asymptote of the curve, by putting
a b «/ 1

x:PE’ y=p P )
VA SO
P b

we get p* + 2¢

=0;

and if p,, p. are the roots of this equation, we have p, - p, = 24;
hence a circle having external double contact with a hyper-
bola cuts off from the asymptotes constant intercepts equal to
the major axis of the curve.
100. The polar of z,, y, with regard to the circle
¢ ¢
x2+g/2+2gig/y—a2—gzy’2=0,
2

. ¢, ¢,
being xx1+g/y1+5~2y(_?/+1J1)—d2—b—23/2=0,
its envelope, when the circle varies, is the parabola

: a*b* (ra,
(-pp 4% <?+?’b{’-1>=o. (1)

Putting ¢, =0, @ = ¢ for a focus, (1) becomes
W
Yy = ¢ \o ’

and the parabola then has its focus and directrix in common
with the curve ; hence we see that the feet of the perpen-
diculars from a focus on its polars, with regard to circles
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having external double contact with the curve, lie on the
corresponding directrix.

101. Taking two circles of the system at Ex. 89 (1),
namely,

Z+yt-2ve+etet-00=0, 2*+yt 202+t -0"=0,
we have for their intersection

Y =0+ Emuy, 2 =2 + 2y
therefore Yy r@te)?=(aten)(aten);

hence we see that the square of the distance from a focus of
a point of intersection of two circles having internal double
contact with the curve is equal to the product of the distances
from the same focus of their points of contact.

102. If two circles of the same system have double con-
tact with a conie, show that the product of their radii is in a
constant ratio to the product of the distances of a point of
their intersection from the foci.

103. If two circles of the system at Ex. 89 (1) intersect in
the points /, + ¥/, the equation of the circle passing through
their points of contact is evidently

S=a*+ 9y -2 w+2"+y* -2 =0.
If Sis fixed, and the conics form a confocal system, the
locus of #/, + 4 is a circle cutting S orthogonally.

If the points o/, + y* are fixed, and the conics form a
confocal system, S has double contact with the Cartesian oval

@+ +a?+y?+ 22 - 162w = 0.

If the radius is given equal to », the locus of «, + ' is
the conic
@yt + 0 (a - 0% 2 = at (2D - 7).

F 2
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If the tangents to S from /, + §” contain a given angle,
the polars of «/, + 3/, with regard to the curve, are touched
by a confocal conie.

104. Tangents parallel to the line y — ma = 0 are drawn
to the system of circles at Ex. 89 (1); show that their points
of contact lie on

ba® + (¢* + m*a?) y* + mb wy — b*¢* = 0.

Show that this conic passes through the foci and has double
contact with the curve.

105. If S=2* + 4* - 2azx — 23y + k* = 0 represents a fixed
cirole, the radical axis of 8 and a circle of the system at Ex.
89 (1) is

a2 + By - k* - 2 d'w + ¢ - 0P =0
and this line is a tangent to
et — 2ax - Qﬁy + B+ 0= ()’ (1)

which represents one of the parabolas passing through the
points of intersection of S and the curve. For the second
system of circles the radical axes touch the other parabola,
which may be described through the same points.

‘When the circle S is touched by a circle of the system,
the radical axis is the tangent at the point of contact ; hence
to construct the points where S is touched by four circles of
the system, we draw the common tangents of § and the para-
bola (1), and then the points of contact of these tangents are
the points required.

106. A circle S meets a conic in the points 4, B, C, D.
Four circles having internal double contact with the curve
are described to touch S, and also four circles having external
double contact; show that the chords of contact of the first
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system intersect those of the second in the centres of the
sixteen circles which may be described to touch the sides
of the triangles 4 BC, BCD, &ec. (see Ex. 11).
107. To find the locus of the centres of similitude of
a fixed circle and circles having double contact with a conie.
The p and w equation of a circle, whose centre is #/, 0 and
radius 7, is evidently

p=7+a cos w. (1)
But for the system of circles at Ex. 89 (3) we may take
o =ccosf, r=>bsnb;

also, if a, (3 are the perpendiculars from the foci on the line
P, w, we have

=3(a+f), ccosw=1(a-f3);
hence (1) becomes
atant 6+ B cotd0-2b6=0, (2)

the envelope of which is o3 - #* = 0, as it ought to be.
If we now write the tangential equation of the fixed
circle in the form & =+* - #* = 0, the equation

:atan%0+ﬁeot%01r—2—]§y=0 (3)

will represent one of the centres of similitude of 3’ and the
circle (2). The envelope of (3) with regard to 6 will then
give the locus required, viz.,
b2 2 2 1)2 2 2
aB-—]-C;-y =0, or a3-0 +7c—2(7 -i)=0, (4)
which represents a conic passing through the foci and touch-
ing the common tangents of =’ and the given curve.
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If the equation of = in Cartesian co-ordinates is
-+ y—-y)»P-F=0,
the locus is found to be

kz 1 ’ 7 \2 s
gV ra@y-ya)—(y-y)=0

‘We see then that the locus will become a circle if

By

’
(v:O, -b-é-—?

in which case = has double contact with the confocal conic
2

x? Y

prap e
The locus (4) evidently passes through the four points on
S, where it is touched by circles of the system (2).
108. If we take two circles of the system (2) in the pre-
ceding example, namely,

atan 3 6, +Bcot L 0.-26=0, atani 0.+ Beot L 0.-26=0,
we find that their common tangents satisfy the equations

2

tan 3 (6, + 6,) - aQ_—bB tan} (0, - 02)— Q_V(%—B—“@;
hence, from Ex. 91 (1), we see that, if the common tangents
are parallel to a given line, or touch a concentric, similar and
similarly situated conic, the intersection of the circles will lie
on a fixed confocal conic.

109. Through a point P, external to a conic, two real
circles are described to have double contact with the curve;
if a’ is half the axis major of the confocal conic touching the
common tangents of the circles, and ¢ is the angle between
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the tangents from P to the curve, show that sin § ¢ = %, where

a is half the axis major of the curve.

110. A right line touches two circles having double con-
tact with a conic; to show that its points of contact with them
lie on the same concentric, similar and similarly situated
conie.

Let zcosw+ysinw—p=0, (#-cosf)*+y* - sin*0=0,
be the equations of the line and one of the circles, respec-
tively ; and let @, y be the co-ordinates of their point of con-
tact ; then

z=ccosf +bsinfcosw, y=>bsinOsinw, (1)

p=>bsin6+ccosbcosw; (?)
hence
z* y2 1 2 2 12 : 2 qin? 2
St E s = {c*cos* 0+a*sin® 0+2bc sin B cos feosw - ¢*sin® fcos* w
a a’ )

PP+ fsinfew A
2 = 7

equal to, from (2), p

a

where @ is half the axis major of the confocal conic touching
the line. The conic

)

/2

ST

$Z
;i +

SIS

. (3)

©

a

therefore, passes through the points where the line is touched
by both the circles.

‘We can arrive at this result by means of the differential
equation of the system of circles. From Ex. 90 (2) we have
for the circles

+ = 0. (4)
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Now, it is not difficult to see that

du + dv _
VA= d®) (=)} T (@ =) - )

is the differential equation of all the lines touching the con-

2 2
focal conic w_/z + sz_z ~1=0. But when one of the lines
a a” — C

touches one of the circles, % must have the same value at the
point of contact ; hence, from (4) and (5) we have
@-p) (@ -)
(* = a®)(* - ) (@ = )(¢ =)
or, dividing by u* - %,
(@ = ) (@t = v) = (@ — %)= 0,

= 0;

which is equivalent to the relation (3).
Putting @’ = ¢ in (3), we see that the points of contact of
the tangents from the foci to the system of circles lie on the

conie
z

111. To find the distance & between the centres of two
circles of the system which touch a given chord of the curve.
Let the equation of the chord be

geosg(a+ﬁ)+%sin%(a+B)—cos% (a-B) =0,
and that of the circle
(x ~ccos ) + 4" — b sin* 0 = 0;
then, expressing that the chord touches the circle, we get

{cos L (a—[3)~ecos B cosd(a+f3))*~sin*@{1~ccos’ & (a+3)}=0,
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or 008 0 — 2¢ cos L (a + f3) cos & (a — [3) cos 0
+cos’L(a-B)—{1-¢cos’](a+f3)}=0;
whence we have
008 0, — cos 0, =2 sin (a~f3) /{1 - ¢ cos*3 (a + 3)}
-2 ¥sin g e B);
but if d is the length of the chord,
d=20sind(a-0);
therefore O =c(cos 0, — cos 0,) = ed.

If the curve is a hyperbola, the two circles having exter-
nal contact with the curve will also be real, and for them we
shall have

112. Tangents are drawn from the foci to circles having
external double contact with a hyperbola; show that their
points of contact lie on the asymptotes.

113. Through the centre of a circle having double contact
with a conic tangents are drawn to a confocal conic; to show
that they meet the circle on two chords of intersection of the
conices.

Expressing that the curves represented by the differential
equations (4) and (5) in Ex. 110 cut at right angles, we
obtain

(aZ —_ M?)(M‘Z - a’z) _ ((12 — v'l) (a’2 — v2> _ 0 .
‘u2 —c? et — ’

or, dividing by u* - %,
<,u'2 — c?)(c'l — v?) + ])26’2 = O’
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which, transformed to Cartesian co-ordinates, becomes
Ayt + 00 =0

but this represents the two chords of the conies which are
parallel to the transverse axis.

114. Through the centre of a circle having external double
contact with a conic lines are drawn to the foci; show that
they meet the circle on the tangents to the curve at the
extremities of the transverse axis.

115. Tangents are drawn from a focus to a circle having
external double contact with a hyperbola ; show that they
contain an angle equal to that between the asymptotes of the
curve.

116. To find the condition that four circles of the system
should be all touched by the same circle.

If we express that the circle

(®—ccos 07 +y*— b sin* =0
touches the circle

(0= af + (g - Bf =1 = 0,

we obtain (e —ccos )+ 3° - (r + b sin 6)* = 0. (1)
Now if we put

ceosO=a by 1 sin 0 = y,
this relation may be replaced by the equations

(@—af+(y-rv/ =12 +p=0; (3)
and thus we see that we have to find the condition that four
points on the conic (2) should lie on the circle (3) ; but this
is known to be

6, +0,+0,+0,=0, or R2mm. (4)
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‘When this condition is satisfied, a confocal conic passing
through the intersection of one pair of the circles will also
pass through the intersection of the remaining pair (see Ex.
91 (1)).

If four circles having double contact with a parabola are
all touched by the same circle, we find that the algebraic sum
of their radii is equal to zero.

117. Let us suppose three of the circles in the preceding
example to coincide, then we see from (4) that, if the oscu-
lating circles at the points + 0 on the curve are touched by a
circle of the system whose parameter is ¢/, we must have

30+6 =0, or 2r;

hence three pairs of osculating ecircles can be described to
touch a given circle of the system; and if circles of the
system be described at the points of contact of these oscu-
lating circles, their intersection will lie on the confocal conic

2 2

__i_.__L = 1
a* -4

(see Ex. 93).

‘We can also show that—(1) the confocal conic passing
through the points of contact of one of the three latter
circles will also pass through the intersection of the re-
maining pair; (2) the algebraic sum of the radii of these
circles vanishes; (8) the centroid of their centres coincides
with the centre of the curve.

118. To find the equations of the circles which touch
three given circles of the system.

From Ex. 116 (2) and (3), we see that the problem is the
same as that of finding the equation of the circle passing

2 2
through three points on the conic 0% . 1;

i hence from
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Ex. 1 (7), (8), and (9), if the equation of the circle sought is

2 +y*—~24x - 2By + C =0,
we obtain

4 = % cos (6, + 0) cos § (0. + 65) cos (b: + 0.),

B =i512/{02 —a*cos* L (0, + 6,)) {¢* — a® cos® § (0, + 0y))

x {¢t — a® cos® 3 (0, + 0},
C = 4a*{cos(0, + 0,)+ cos (0, + 05) + cos (8, + 0,)) — 5 (a* = 20°);

and, if R is the radius of this circle,

R =% sin 2 (0, + 0,)sin3 (8, + 0, sin 3 (6, + 6,).

The equations of the three other pairs of circles will
evidently be obtained by changing the sign of one of the
angles 0,, 0., 0..

119. To find the angle between a tangent to a conic and
a circle having external double contact with the curve.

Let the equation of the tangent be

£ COSw + Y Sinw = p = 4/ (4* co8* © + b* sin® w),
and that of the circle
mt@y-0)F=r=d <1 + B) (see Ex. 89 (4)).

¢
Then, expressing that the perpendicular from the centre of
the circle on the tangent is equal to » cos 0, we get
reosf=0sinw-p, 1
where 0 is the angle sought. But, putting

p=asina, [3=ccotep,

. «
we find csin w=acosa, »=-—:;
sin ¢
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hence (1) gives at once

0=a+¢. ()
Taking two circles and the same tangent we have
0, - 02=¢1“¢2;

hence we see that the tangents to a conic meet two fixed
circles, having external double contact with the curve at
angles whose sum or difference is constant and equal to the
angle subtended at one of the foci by the centres of the
circles.

Taking two tangents and the same circle, we have

01’-02=Cl1—a2}

hence we see that a variable circle having double contact
with a conic meets two fixed tangents to the curve at angles
whose sum or difference is constant. This constant, it is easy
to see, is equal to half the difference of the angles subtended
by the foci at the points of contact of the tangents.

120. To express the angle 0 in the preceding example in
terms of the co-ordinates , y of the intersection of the tan-
gent and circle.

This may be most readily effected by means of the
differential equations of the circle and tangent in elliptic
co-ordinates. These equations are

udu vdv B
R e A ey G
du dv

N [ VAT s A
respectively (see Ex. 90 (3)).
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But when two curves are represented by the differential
equations in elliptic co-ordinates,

Pdy + Qdv = 0, Pdu+ Qdv=0,
the angle 6 between them is given by

PR - PQ)/ ((u* - &)(c* - )}

_
ol = - s @)

hence, from (1) and (2) we have

tan():wli}

a* + uv ’

a* + uv
alp+v)

and, therefore, cos 0 =

Transforming this expression to Cartesian co-ordinates, we get

a+ ex a— ex
cos 0 = , Or —,
P p

where p, p’ are the distances of #, y from the foci; 6, there-
fore, is equal to half the angle which the points of contact of
the tangents from «, y subtend at one of the foci (Salmon’s
Conics, Art. 121).

121. Two circles are described through a point , ¥ to
have external double contact with a conic ; to find the angle
subtended by their centres at a focus.

A circle having double contact with the curve being
written in the form

o 2
8 4 20 b

7 By + 5 (@ +y* -a’)=0,
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we have, for the two circles of the system which pass
through «, y,

O . o Rac (&t ¥ _ 2ac .
e e L. PR S EE
but, if ¢ is the angle sought, we have
c(B-B)_ 2/

tan ¢ = F+ i b —at -y

from which we see that ¢ is equal to the angle between the
tangents drawn to the curve from «, y (Salmon’s Conics, Art.
169, Ex. 3).

This result might also be readily deduced from the
relation (2) Ex. 119.

122. Two circles having external double contact with a
conic are described to touch a tangent to a confocal conic;
to show that the angle subtended by their centres at a focus
is constant.

Expressing that the circle

# 4 ly— B~ =0
has double contact with the conic

x‘l yZ

Y 120

a? * b* 1 ’
and touches the line

rzcosw+ ¥y sinw —p =0,

,,2 B?
E - 2

[4

we obtain =1, PBsinw-p=r

Eliminating » between these equations, we have

3* (a* = ¢® sin® w) + 2¢*p sin wf3 + ¢ (¢* - p?) = 0;
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hence, if 3,, (3. are the roots of this equation, we find

Rac \/ (p* + ¢ sin® w — a?)
Bi-fu= @ — ¢ §in® w : 1)

B = L@ -p) ©)

@ - SN w'
But if ¢ is the angle sought,
C(Bl - ﬁz) _ 2“«/(]92 + e sin®w - az)

tan ¢ = F+ PP 2 -p-csin‘ew
from (1) and (2),
_Ra.(d” - ) 3
T 2 —-a? 3)

where « is half the axis major of the confocal conic touching
the line. Therelation (3) may be written in the simpler form

1 a
85 ¢ =

As a particular case we have:—The circles drawn through
the foci to touch a variable tangent to a conic cut each other

under a constant angle.
123. A circle having internal double contact with the conie
LY.
IR 1-0

cuts orthogonally a circle having internal double contact with

the confocal conic
2 2

z Y
7+a7j‘cz—“1=0,

a:

show that the locus of their intersection is

¢\, -
+(1+E+b—,2>y - =0.
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If both the circles have external double contact, show that
the locus is
2 2
x2<%+ 2,—2— 1>—y2—02=0.

124. To find the envelope of the tangents to the circles
having double contact with a conic at the points where these
circles are intersected by a fixed tangent to the curve.

Let the equation of one of the circles be

Szx2+y2—2ﬁy—a2—%[32:0, (1)
and that of the fixed tangent

xr Yy .
;cos¢+%sm¢—1:0, ()

then we may write 8§’ = 0 in the form

2 yz c? 0 A\
sl B) =0
but from (2) we have

xz

P

Y1 (“sing -Loos ¢)3
+ 1—<as1n¢ beos¢>,

a
?sing - (g2 8)=0;
therefore &31n¢—zcos¢tdb\y+czﬁ>~0, (3)

hence, if 2/, 9’ is one of the points of intersection of (1) and
(2), we find from (2) and (3)

+e+@ in sin ‘(ﬁeos

7 cos ¢ + o sin ¢ y,_ 1 ¢+ac ¢
= , T E em— e
b

a l+ecoso

1+ecosg
G
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The tangent to S at o/, 3’ is, then,
s sin ¢>} +0(y-p3) {sin ¢ F %‘g 08 ¢>

ac

ar {cosq; i—<e +

—<% B+ By + a2>(1 tecos¢) =0,

which, when (3 varies, touches one or other of two parabolae.
125. Let
S=@-a)i+y*—rt=0

be a circle having double contact with the conic

2 2

@yt
;[2 + E 1= 0,
and S'=a*+y-Pr-"=0
a circle having double contact with the confocal conic
oy )
arpm =t
then from (3) and (4), Ex. 89, we have
pe & 7'? Bz )
ﬁ+?_1, (1) 25—_52'*17(2)
72 2 2 2 2 72 e
therefore r_/z B r_2 _a +2[3 _ 3” 08 qs,
a* b ¢ ¢

where ¢ is the angle at which § and 8’ intersect.
Hence, when ¢ is given, the ratio of » to +" has one or
other of two constant values.
Putting » = m” we get from (1) and (2)
ba® + n*a?3* = ¢ (0° — n*a®). (8)
Now if the line
Ty Y120

a«
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is a normal to the conic

we have o’ +m* = (1* = m*)

We see thus that, when S and S’ cut each other under a
constant angle, the line joining their centres is normal to

2 2

z Y ¢

P owdr T - nd =0
which represents one of two conics confocal with the given
ones.

If , y are the co-ordinates of a cenfre of similitude of §
and 8§, we find, in the same case,
(0* - n*a™)

Vet + d*y = ¢ ——
y (n+1)*°

which represents one of four concentric conics.

126. If the circles § and §” in the preceding example
touch one another, show that their point of contact lies on
the conic

xZ ?/2

a/—2+ﬁ-—120.

If S and 8’ cut orthogonally, show that they intersect on
@ v
PR T

127. To find the orthogonal trajectory of the system of
circles having double contact with a conie.

‘We have seen in Ex. 90 that the differential equation of
the system having external contact with the curve is

2 2

udu vdv -0
@ -G " ‘

V@ =) (¢ =)

G2
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The differential equation of the trajectory is, therefore,
N Ee
uN\ =) v\ - v
Taking the lower sign and integrating, we obtain
log{ay/ (=¢) + ¢ o/ (=)} [/ (6= ")+ 0/ (@@= 17)}~log s
—elog {y/ (u* ~a) 1 o/ (u = &)} /(@ = v

+4/(¢* = v*)} = a constant.

If, then, the eccentricity of the curve is equal to the ratio of
two integers, the trajectory will be algebraic. TFor the
system of circles which have internal contact with the curve
the trajectory is transcendental when the curve is an ellipse,
and algebraic when the curve is a hyperbola whose eccentri-

S m .
city is equal to ————, where # and » are integers.

o =y

128. A variable circle has double contact with a conic;
show that the tangents drawn through one of the points of
contact to a fixed confocal conic intercept on the circle seg-
ments of given length.

129. Two circles of different systems have double contact
with & conic; to show that the intersection of their chords of
contact is a limiting point of the circles.

Taking the equations (1) and (2) in Ex. 89, we may
write

S=a+y -2+ e - B,

/ 72
S§x2+y”+2”ﬂ/{,—§/—a2—cz%;
hence @S-8 = (@ - ¥){(w-aV+(y-y))

which proves the result stated.
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130. Four circles having double contact with a conic are
described to cut a circle J orthogonally ; show that their
chords of contact form a rectangle inscribed in J so that
each pair of opposite vertices are conjugate with respect
to the curve.

131. Show that the second limiting point of the circles S
and 8’ in Ex. 129 is the foot of the perpendicular from the
point &', %" on its polar with regard to the curve.

132. To find the length of a common tangent of two
circles having double contact with a hyperbola, the circles
belonging to different systems.

If the circles

(-a)f+y*=1=0, P+ @y-B)-1=0,

have double contact with the conic

2 2

@y
10
we have from (3) and (4), Ex. 89,
a’ r? ,/2 Bz
srp-h wmanb
1’2 72 aZ + B?, do
therefore R R

where d is the distance between the centres of the circles;
e o e,
hence d*=er* + i (1)
But, if ¢ is the length of the common tangent,
£ =d— (7, + 7,’)2

=(@-1)/"+

22

7
e -1

F 2 from (1);

therefore b=\/(¢-1)¢¥F A—(é%—l—), )
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the two signs corresponding to the internal and external
common tangents ; hence, if one circle remains fixed, while
the other varies, the sum or difference of their external and
internal common tangents will remain constant.

133. Let S be a variable circle having double contact
with a hyperbola, and 8., S. two fixed circles of a different
gystem having double contact with the curve; then, if ¢ is a
common tangent of § and §,, and %, of § and §,, show that
¢, — ¢, = a constant.

134. A circle S whose centre is P touches the sides of a
triangle inscribed in a hyperbola. If circles S, S. be de-
seribed to have double contact with the curve, so that their
chords of contact intersect in P, show that the radius of S is
in a constant ratio to a common tangent of S, and 8, (see
Ex. 10, (3)).

135. A conic has double contact with two fixed circles;
to find the locus of the foci.

If the circles belong to different systems, we see from Ex.
132, (1), that the eccentricity of the curve has one or other of
two constant values. Hence, it readily follows, that the foci
lie on one or other of two circles concentric with the circle
which has external contact with the curve.

If both the circles have external contact with the curve,
we see from Ex. 89, (4), that the distances of a focus from the
centres of the circles are to one another as the radii of the
circles. The foci, therefore, in this case, lie on a circle pass-
ing through the intersection of the given circles.

The complete locus, then, consists of five circles, besides
the line joining the centres of the given circles.

136. If two circles are connected by the relation

d* =2 (7 + 17,
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show that an infinite number of equilateral hyperbolae can
be described to have double contact with them.

137. A hyperbola has double contact with two fixed
circles; to find the envelope of the asymptotes. Suppose
the circles to belong to different systems, then if 4, B are
their centres, and C is the centre of the curve, ACB is a
right angle, and because the eccentricity is given (see Hx.
132, (1)) the asymptotes are inclined to C4 and CB at
constant angles. The asymptotes, therefore, pass through
fixed points on the circle described on 4B as diameter.

If the circles belong to the same system, an asymptote
cuts off equal intercepts on the circles (see KEx. 99). The
envelope then is easily proved to be a parabola of which
the middle point of the centres of the circles is the focus.

188. A conic has double contact with two fixed circles,
the circles belonging to different systems; to find the en-
velope of the directrices.

The equation

2+ y* — Raxw + k* — ¢ (x cos 0 + y sin 6)* = 0, (1)

where 0 is variable, evidently represents a system of conies
having double contact with the fixed circles

By -2ar+ k=0, (1-&)("+y")-2ax+k=0;
and since the chords of contact, namely,
wcosl+ysinf =0, =zsinb—ycosb =0,

are at right angles to each other, the circles are of different

systems.
‘Writing the equation (1) in the form

74yt = Raw + B+ € p® ~ 2¢*p (w cos O + y sin 0)

=¢ (v cosl + ysinf - p)P,
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we see that zcos @+ ysinh—-p=0

will represent a directrix of the curve when the left-hand
member of this equation represents the square of the distance
from a focus. This condition gives

F(l-e)p*—2apcos@+4 -a =0,

showing that the directrix touches a conic of which the origin

is a focus.

139. To find the envelope of the director circles of the
system of conics in the preceding example.

The conic being written in the form (1) in the preceding
example, the equation of the director circle is

(1 - &) (2* + »*) — 2az (1 — ¢ sin® 0) — 2¢°ay sin O cos b
+ 5 R-6¢)-a"=0 (Conics, Art. 294).
The envelope is, therefore,
{(1-&)@+9") - R~ ar +k (2 -¢) - az}2 —éta* (¥ +y")=0,

which represents a Cartesian oval of which the origin is a
focus.

140. A conic has double contact with two circles, the
circles belonging to the same system ; to find the envelope of
the director circle.

If a, 3 are the perpendiculars from the centres of the
circles on a line, the equation
a . 3  Raf3 cosf

o Y,

sin® 0 =0 (1)

evidently represents tangentially a conic having double con-

tact with the circles
a = =0, -7 =0,
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Now if the co-ordinates of the centres of the circles are
* ¢, 0, we have
Ac+ v - A+

a=
and (1) becomes
(Ac + v)? . (Ae —v)* 2 (N°¢*—v*)cos b

/2 ’

po —sin* 0 (A* + p*) = 0

e
hence (Conics, Art. 294) the equation of the director circle is
(r* + % = 2 cos 0)(a* + ) = ¢ (" — 1)z
+ ¢+ = 20" cos 0) — 207 sin® 0 = 0 ;
the envelope is, therefore,
(@ + =) = 2 + (w + 0} = 27 (i + (w — )} + 4r** =0,

which represents a Cartesian oval, of which the origin is the
triple focus, and, it can be shown, the centres of similitude of
the circles are single foci.

141. A coni¢ has double contact with two fixed circles;
to find the locus of the points through which two curves
of the system cut orthogonally.

If the circles belong to different systems, we write the
equation of the conic in the form (1), Ex. 138. Expressing,
then, that the two conics corresponding to the parameters
0, 0. cut orthogonally, we get

&8 cos (0, — 0,) + (¥ — a)* + y* — e /8 {(z = a)(cos 6, + cos 6,)
+y (sin @, + sin 6;)} = 0,
where S=a*+ 1y - 2ax + k.

But  cos (0, - 0.) = 28 - —¢%, cos (), + cos B, =

7 r "

./ S
)
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‘We find thus, finally,
(@ + 4= 2az+ 1) {(1 - &) (@ + 9*) = a2 + 2} + (a2 = B)*+* =0,

which represents a bicircular quartic, of which the centres of
the fixed circles are double foci.

- If the circles belong to different systems, the locus is
easily proved to be the circle described on the line joining
the centres of similitude of the circles as diameter.

142. Given three circles with their centres on a line,
there is, in general, a single conic having double contact
with them.

Since the tangent from any point on the conic to one
of the circles is in a constant ratio to the perpendicular
on the chord of contact, it can easily be seen that

1./, +ma/ 8 +ny/8s =0, 1)

where S, S;, S; are the squares of the tangents to the circles,
and /, m, n the distances between their centres, represents
the conic. This equation (1) when cleared of radicals is of
the second degree, the terms of higher orders vanishing
identically.

In a similar manner, if 3,, 3, =; are the squares of the
intercepts of a line on the circles, we can show that

i/ Si+ma/So+n4/S=0

is the tangential equation of the conic.

If the line joining the centres of the circles is the major
axis of the conic, we can easily show that the eccentricity ()
is given by the equation

2

¢ Imn

P

= 29
1 - 0P+ mrt + oy
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where 7y, 1, 7; are the radii of the circles. If the same line
is the minor axis of the curve, we find
. Imn
= e,
b® + mry® + nrs’

It is to be observed that in the above /, m, n are taken so that
l+m+mn=0.

In the first case we see from Ex. 97 that the foci of the
conic are the double points of the system in involution deter-
mined by the centres of similitude of the circles.

In the second case the foci are the points at which
the centres of similitude of each pair of circles subtend
a right angle.

143. Given two circles, show that there is a single para-
bola having double contact with them, and that the focus
of the curve is the middle point of the centres of similitude
of the circles.

144. Given four tangents to a conic, to find the locus of
the centre of a circle of given radius having double contact
with the curve.

Let a, 8, v, & be the perpendiculars from a point on the
four tangents, and let

la +mf3 +ny +pd =0 (1)

be an identical relation. Now if a’, a are the perpendiculars
from the pole of the chord of contact and centre of the circle,
respectively, on a tangent of the curve, we have

a? =’ (o ~ ),

where 7 is the radius of the circle and m is a constant ; hence
from (1) we obtain

L/ (@~ 1)+ /(B =1+ /(Y =)+ p /(88 =)=0 (2)
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for the equation of the locus. This equation when cleared of
radicals is found to be of the sixth degree, as terms of higher
orders vanish idenfically. It can easily be shown that the
locus passes through the circular points at infinity, and the
points at infinity on the diagonals of the quadrilateral formed
by the tangents. If we put » =3 in (2), we see that the
locus of the foot of the normal at the point of contact of one
of the tangents is

I/ (o= &) +my/ (B = &) +ny/(y* - &) =0,

which being divided by & represents a cubic passing through
the points where & is met by «, 3, y.

145. By the same method as that employed in the pre-
ceding example we can show that, when we are given three
tangents to a parabola, the locus of the centre of a circle
of given radius, having double contact with the curve, is a
curve of the fifth order. We can prove that this locus
is unicursal as follows:—Since there is only one circle of
given radius having double contact with a parabola, the
co-ordinates of its centre must be capable of being expressed
rationally in terms of the coefficients in the equation of the
curve. DBut given three tangents to a parabola, the coeffi-
clents are quadratic functions of a parameter; there-
fore, &e.

146. Given four points on a conic, to find the locus
of the centre of a circle of given radius having double
contact with the curve.

Let «, 3, v, 8 be the perpendiculars from the points on a
line, then if 7, m, n, p are the areas of the four triangles
formed by the points, we have the identical relation

la +mf3 + ny + pd =0, (1
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Now if pi, pu, ps ps are the distances of a point from the four
given points, and » is the given radius, we have

o

P P o= ezaz’ ‘022 = Bz, &e. ;

hence from (1) we obtain

0/ (012 = 7)) +m o/ (pt =1%) + 04/ (0 = %) + p o/ (p — 1) =0,
which being cleared of radicals is found to represent a curve
of the sixth order.

If the four points lie on a circle, we can show by the
method employed in Salmon’s Conics, Art. 288, Ex. 10, that
the locus breaks up into two of the third degree.

If the four points are at the vertices of a parallelogram,
we have / = — m = n = - p, and it can be easily shown, then,
the locus reduces to a curve of the fourth order.

Putting » = ps, we see that the normal at one of the
points meets the arcs of the curve in points which lie on the
conie

Ly/ (pi = pf) + m/(p = pi*) + 0/ (ps* = ps°) = 0.

‘When the given points lie on a circle this conic breaks up
into two lines passing through the centre of the circle.

147. A circle of given radius has double contact with a
conic inscribed in a fixed triangle; if the pole of the chord
of contact lies on a fixed line, show that the locus of the
centre of the circle is a curve of the fourth order.
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VI.—CIRCLES CUTTING THE CURVE ORTHOGONALLY
AT TWO POINTS.

148. There are two systems of circles which cut a conic
orthogonally at two points, the lines joining the points being
parallel to one of the axes of the curve.

2 2
If Z% + f%—1=O is the equation of the curve, the equation
aZ
x2+y2—2;x+a2+02—92x’2:0 (1)

represents the circle cutting the curve orthogonally at the
points where it is met by the line # — 2’ = 0, and

2 2
x2+y2—2%y+bz—cz+%(l/2=0 ()

represents the circle cutting the curve orthogonally at points
on the line  — % = 0.

If » is the radius and « the abscissa of the centre of the
circle (1), we easily find

72 _ (az - aZ)(aZ _ 02)

: s ®)

a

and if »’ is the radius and (3 the ordinate of the centre of (2),

oo @)

149. Since the equation (3) in the preceding example is
unaltered if we interchange « and ¢, it follows that the circles



CIRCLES CUTTING THE CURVE, ETC. 5

of the system (1) are also doubly orthogonal to the conic
U 1=0
¢ b ’

The points on this conic will always be imaginary when
those on the given curve are real, and real when the latter
points are imaginary.

It may be observed that the circles of the system (2) are
doubly orthogonal to the imaginary conic

x2 2

—2 + ‘1-/—2 + 1 = O.
@ ¢
150. The envelope of the system of circles at Ex. 148, (1),
is evidently
@ + o + @ + &) = Ta*¢a* = 0,
which, being transformed to elliptic co-ordinates by means of
the formulae
2yl =0+, o=,

becomes (1 + v+ @)’ =Tt = 0
but this is equivalent to
ud+ 3+ ad=0.

The envelope can also be written in this form, if the
vertices of the curve are taken as the foci of the system
of conics.

151. If pairs of circles having their centres on an axis,
and cutting each other orthogonally, be described through a
fixed point on a conic, the circles passing through the vari-
able points where they meet the curve again have a common
radical axis.

The circle having its centre on the axis of # and passing
through the points #,, ; on the conic

{c‘l y'.’.

(;§+§‘1:O
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may be written
2y — (v +m) @+ Faay — 0= 0. (1)
Now, if a is the abscissa of the fixed point, the circles
Fry-dla+m) e+ dar, ~ 0 =0,
Pry-Flatw) e+ fan, -0 =0,
cut each other orthogonally if
e (a + @)(a + @) — 2 a (v, + @) + 40° =0, ()

subject to which condition the circle (1) passes through the
fixed points determined by the equations

2
xz(zeze)a, $2+y2:<1+;>02+€2a2. (3)

These points satisfy the equation

2
a ]
Py -2—z+a+-ed =0,
a

which represents the circle cutting the curve orthogonally
at the points lying on # = a. The locus of the points (3) is
evidently a concentric conic ; but if the curve is an equilate-
ral hyperbola they lie on the axis of y.

152. If three circles of the system at Ex. 148, (1), be
drawn through a point, show that the centroid of the three
corresponding points on the curve lies on the axis of .

153. Pairs of circles of the system at Ex. 148, (1), are
described so as to have the same radius; show that their
centres belong to a system in involution.

154. The circle cutting the parabola 3 — px = 0 orthogo-
nally at the points where it is met by the line # - #" = 0 may
be written

&4yt + e - 3~ pal =0,



ORTHOGONALLY AT TWO POINTS. 97

Its envelope is, therefore,
Re—-p)*+12 (@ +y*) =0,

which represents an imaginary conie.
155. Let S be the osculating circle at a point #/, ¢ of the

2 2
conic ;—; + ‘%5 —1=0. Show that a parallel to the axis of ¥
through the centre of S meets a circle concentric with the
curve and cutting S orthogonally in the points of ultimate
intersection of the circle

a* r
P+ -2 Se+at+ - =0.
z

156. Show that the length of the tangent from a focus to
the circle (2), Ex. 148, is equal to the semi-diameter of the
curve parallel to the tangent at 3.

Also show that the angle between the tangents from a
focus to the circle is equal to = — 2¢, where ¢ is the eccentric
angle of ¥/

157. If a circle of the system (1), Ex. 148, cut orthogo-
nally a circle of the system (2) in the same example, we

2 2
a2+bz—cz<g——%>=0,

must have

2

from which we can show that the line joining the centres of
the circles touches the confocal conic

z* 2/2 @ — b

il il

If a circle of one system cut orthogonally a circle of the
other system belonging to a confocal conie, we can show that
the line joining their centres touches a confocal conic.

158. Tangents are drawn from the focus ¢, o to circles
H
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of the system (2), Ex. 148 ; show that their points of contact
lie on the limacon

@+ =)’ =0 (& +y*) = 0.
159. Lines are drawn through the focus ¢, o and the

centres of circles of the system (2), Ex. 148 ; show that they
meet the circles in points lying on the cubic

ye+ax) -0 (c—2a) =0.

160. To describe through a point on the curve circles of
the system (1), Ex. 148.
Eliminating y between the equations

xZ yz

&54-?*1:0,

aZ
Py -2Sa+at+ - =0,
x

and dividing by # — #, we obtain
¢ (@t +a'w) -2 =0;

hence two circles of the system may be described, and the
circles passing through the variable points where they meet
the curve again intersect the axis minor in two fixed points.

161. If two circles of the system (1), Ex. 148, be de-
seribed to cut orthogonally a circle of the system (1), Ex. 89,
show that the circle passing through the corresponding points
on the curve meets the axis minor in the fixed points

vt =at+
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VIL.—NORMALS.

162. A triangle is inscribed in the conic

xZ yz
E;‘l"b—z'—l:o,

and circumseribed about the conic
Y
8 = ol 1=0,
to show that the normals to S, at the vertices of the triangle,
pass through a point, and to find the locus of the point.
‘Writing down the conditions that the sides of the tri-
angle

gcw%@+ﬁ)+%@n%@+ﬁym%%@-ﬁyﬂx&%

should touch S’, and eliminating ¢’ and &', we obtain
sin (a + (3) + sin (8 + y) + sin(y + a) = 0, (1)

which shows that the normals always pass through a point.
Now the hyperbola

8" =2 (Cay + b*y'w - a*’y)=0
passes through the feet of the normals drawn from &/, 4" to §;
hence, since 8” circumscribes triangles circumseribed about
8’, we find from the invariant relation connecting the two
latter conics

a4x’2 b4 y’Z

= ¢ =0, @)

H2
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163. If in the preceding example

, @ o, b
a=~5§, b=‘c'§, (1)

the locus (2) coincides with 8. Thus we see that the normals
to S at the extremities of chords touching the conic

2z ¢y 1

AN R ®
intersect on the curve. We are permitted to assume the
values (1) for &, ¥, as they are consistent with

a v
a3 1%

the invariant relation connecting S and 8.
From Ex. 35 we see that the locus of the centre of the
circumscribing circle is, in this case,

ata® + 0%y = L o't
Also the envelope of the circumseribing circle is

2

2
@+ —a - B — a4b4<”i;-6 + i): 0.

From Ex. 7 the locus of the centroid of the triangle is
@ oy 1@+ b)?

2 ETe 4
164. To find the area of the triangle considered in the
preceding example.
Let 2,91, ®y:, #:9; be the co-ordinates of the vertices of

the triangle, then we have

Xy Xy @
A =1y, Yo Y |
1, 1, 1
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therefore squaring we obtain
¢, ey, S
4N = 2oy, Sy, 2y | 1)
S, >, 3

But eliminating y between
2 2
ji—z-l— ‘%2— 1=0, cay+byz-a*a’y=0,

we obtain

et -2 ' b+ a? (Bt + Dyt - o) 2t + &e.=0; (2
Y

2
’

hence T v+ = Z,

02

since «” is one of the roots of (2); therefore

2 bZ
S = (g——;——) Z,
. (@ +0) ,
and similarly y=-—7 ) .
‘We also find
2 2612 2 2\ /2 2,,/2 1)
p =~CT{(a + 2N - By + ¢,
2
Syt = gc—b; 107 = 2e*) y* - a*a” + ¢},
2 b? 2
2”:(/ = — (.a_._l.;_.)_ x’y/;

[+

hence, substituting these values in (1), and reducing by means
72 79

of the equation 27 + % - 1=0, we get finally

L Y& s s ®?
A* = (@ = 20 5 - (26 - B)

a
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165. A chord of a conic is a tangent to a parabola which
touches the axes of the curve; show that the normals at its
extremities intersect on a curve of the third order.

166. The circle

2+ —2ax -20By + =0
passes through three points on the conic

xZ y2

E{,E + 55 - ]. = 0,
at which the normals intersect in the same point ; show that
a2 aZ b2 BZ 1

Fvap (e d
167. From the point where a normal to the conic

x?

?/2
Zz + ? -1=0
touches the evolute two other normals are drawn to the curve;

show that the line joining their feet is normal to the conie
atbt

et + 0y = —.
¢

168. If S and T are the invariants of the pencil which.
joins any point on the conic
@ Y.
pola 1=0
to the feet of the four normals drawn to the curve from , y,

show that
S (¢ -a'a - bzyz)?’
"~ T dvrdldy
169. If from points on the line /z + my + n = 0 normals
are drawn to the conic

A T
_+P—1:O,

2
a*
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show that the poles of the chords joining their extremities
form a quadrilateral inscribed in the cubic

Iz ¥\ my @ no (2 g\
S5 F-) (e )

170. A conic circumscribes a triangle so that the normals
ab the vertices pass through a point; to find the locus of the
centre of the curve.

If 0 is the angle which the chord joining the points
a, 3 makes with the diameter bisecting it, it can be easily

2
shown that cot 0 = Q% sin (a + 3) ; hence we see that the
condition (Conics, Art. 231, Ex. 10) that the three normals
should meet in a point can be written in the form

cot 0, + cot 6, + cot 0, = 0, (1)

where 0,, 0., 0 are the angles which the sides of the triangle
make with the diameters bisecting them. But if a, 3, y are
the perpendiculars from a point on the sides of the triangle,

we have
_Bsin B-ysin O +asin(B-0)
oot 6, = " 2asin B sin O ’

and similar values for 0,, 6;; hence, from (1), we obtain

a7 Sif 5 =0+ lp(a- ) =0, (2)

which represents a cubic passing through the vertices of the
triangle, the centroid, and the centres of the circles touching
the sides.

It may be observed that if conics be inscribed in the
triangle, so that the axis major passes through the centroid,
the foci will lie on the cubic (2).
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171. In the preceding example show that the locus of
the points through which the normals pass is the cubic

(cos4 - cos B cos C')a(f3* - y*) +(cos B — cos 4 cos C)3(y* —a’)
+(cos O —cos A cos B)y («* — 3°) = 0.

172. To find the condition that the normals at six points on
2 2
the curve ;2 + %2‘ 1=0should be all touched by the same conie.
Expressing that the normal whose equation is

touches a conic given by the general equation, we obtain an
equation of the eighth degree in tan ¢, between the roots of
which we find three relations by eliminating the constants in
the equation of the conic. Eliminating from these relations
two of the roots, we have the condition required
PQ-RS=0,
where P =3cosd (¢ + o+ s — pu — P5s — Po),
Q== sin (¢ + o + ¢3 + ¢u),
R=3Scos(s~¢1), S=sin2 + = sin (¢, + ¢o),
2s being equal to =¢.
If the normals at six points on the parabola y* — pz = 0
are all touched by the same conic, we find
Sy =0.
173. Three normals are drawn from a point P of the conic
x2 2
P %2 -1=0
to the curve; show that the product of their lengths is equal to
20 b*

PRy )

where p is the radius of curvature at P.
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174. Normals are drawn from a point z, y to the para-
bola ¢* — 4ma = 0; if A is the area of the triangle formed by
their feet, show that

A* = 4m (v — 2m)® — 2Tm2y".
175. Normals to the parabola y* — 4mz = 0 include a

constant angle; to find the locus of their intersection.
Let us write the equation of the normal in the form

y = te+ 3pt + 4pt° =0, @

where ¢ is the tangent of the angle the normal makes with
the axis of «; then if a, 3, y are the roots of the equation

(1) in ¢, we form the equation whose roots are ((la—;%)—)‘" &e.
a
‘We thus find for the locus
2 (2m? — 2 + ma + £ (y* + 3m* — ma))*
—m (1 + )" (4 (z - 2m) — 2Tmy?} = 0,

where ¢ is the tangent of the given angle.
176. Triangles are inscribed in the parabola

V=y -pz=0,
and circumscribed about the parabola
(az + By)* — 4pf*2 + yay - pBy = 0;

show that the normals to ¥ at the vertices of the triangle
pass through a point, and show that the locus of this point is
a right line.

177. To draw a normal to an equilateral hyperbola from
a point on the curve.
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The curve referred to the asymptotes being written in

the form
2y - a*=0; o))

the hyperbola which passes through the feet of the normals
from «/, y* to the curve is

-y -de+yy=0. 2)

Solving, then, for # from (1) and (2), and remembering
that 22’y = o*, we find
@ =-3ay,
and, similarly, ¥ =— 32 a*d.

Thus we see that but one real normal can be drawn.



VIII.—LINES MAKING A CONSTANT ANGLE WITH
THE CURVE.

178. To find the locus of the poles of lines making a
constant angle with the conic

A
=t =
If ¢ is the eccentric angle at a point on the curve, and m
the tangent of the given angle, the equation of the line may

be written
2 (b cos ¢ + ma sin ¢) + y (@ sin ¢ — mb cos ¢)
— (@b + mc* gin ¢ cos ¢) = 0. (1)
Comparing this equa,tion with
vw oo
— + —b—z— -1= 0,

@ bcos¢+masin¢
we get - = 5 )
ab + mc* sin ¢ cos ¢

Y _asing-mbeosg

b*  ab+mc*sing cos¢’

hence, eliminating ¢, and omitting the accents, the equation
of the locus is

4 2 A B
m<c-—a~ci—£ v ch.q<_ ‘Z——l\

b’ at  be ) bt \a&*

)
1 /2 N\ /a? z/ N\
A9 S S
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which represents a quartic having a node at the origin and
two nodes at infinity. We see thus that the envelope of the
line (1) is a curve of the sixth order with six cusps.

179. To find the condition that three lines making an
angle tan™m with

§=".Y _1-0
@t b
at the points a, (3, v should meet in a point.

Since the equation of the line making the angle tan™'m
with the curve at the point 2, 3" is

@t b* <% + %% - 1> +m (@*yx - o'y - ¢dy’) = 0,
it follows that (see Comics, Art. 181, Ex. 1) the hyperbola

S =m(Cay + Vy'z - a*2’y) - ¥de - ayy+ a?b*=0 (1)
passes through the points on S, at which lines making the
angle tan"' with the curve intersect in «/,%; hence, if P,Q,
are a pair of lines passing through the latter points, we must

have
S’ + kS =APQ, ()

where, in terms of the eccentric angles,

P=?eos%(a+ +gsin§a+ - cos % (a - (3),
7] b

Q=z—cos%('y +9) +%Sin%('y +38)—cos L (y—9).
Equating, then, the co-efficients of #?, y*, zy, and the absolute
terms in this identity, we obtain
k=Xcosd (a+f3)cosd (y+0)=Asind (a+)sini (y+9),

mc*ab = Asind (a + 3 + vy +9),
@b =k =Xcos}(a—f3) cosi(y—29);
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hence a+fB+y+d=m, (3)
and sin (8 + y) + sin (y + a) + sin (a + ) =ii;. (4)
180. The envelope of the line (1), Ex. 178, may be most
easily obtained by expressing that the conics S and 8’ in the
preceding example touch one another (Conics, Art. 372). We
see thus that the envelope is of the sixth order. We find the
four points on the curve corresponding to the cusps of the
envelope by putting a = 3 = y in (4), Ex. 179, when we get
2ab
Epoyy
The two remaining cusps are at infinity.
181. If through any point «, 3" of the hyperbola

sin 2a =

(y + mz) (@ — my) — me* = 0
lines be drawn to make the angle tan™ s with the conic
2

A 2
i %2 -1=0,
show that their feet lie on the lines
mcw — a* (y' + ma’) =0,
mey - b* (& — my') = 0.
182. The circle passing through #/, ' and the points
of contact of the tangents from #/, y to
2
i % -1=0
meets the curve again on the line L. Show that the centre
of the hyperbola (1), Ex. 179, lies on L.

183. If triangles be inscribed in the conic
S=2 47 _1=0,
@ b
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and circumscribed about the concentric coniec, whose tan-
gential equation is

S=AN + Byt + Ov* + 2H A = 0,
we have from (3) and (4), Ex. 39,

/A+§ +2’~E—I'n =C
\E 7 CoS ¢ s ¢ = Cp,

A+§ sin —Q—Hoos =0y ;
Py b SID. ¢ ab ¢=10q;

a?
S

h in ¢ — ¢ cos 2
ence psme¢ —gq (l)ﬁabO’
but psing —qeosgp=sin (F+vy) +sin (y+ a) +sin (a + [3);

thus we see at once from (4), Ex. 179, that lines making the

a*b*C

s > with S at the vertices of the tri-

angle pass through a point.

To find the locus of this point we express the invariant
condition that the hyperbola (1), Ex. 179, should circum-
seribe triangles circumscribed about = ; we thus find

constant angle tan™

adat (y +mz)*+ V0t (@ —my)* - 20 a* 0 (y + ma) (2 —my) —m*ct=0,
where dat + by + 20wy —1=0

is the equation of = in #, y co-ordinates.

184. Lines making a constant angle with a conic at the
vertices of an inscribed triangle pass through a point on the
curve ; show that the locus of the centroid of the triangle is
a concentric conie.

185. From the point of intersection of two lines making
a constant angle tan™m with the conic

x2 ?/2

E'FZZ—I:O
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ab the extremities of a chord which passes through the fixed
point &, 3/, the two other lines are drawn which make the
same angle with the curve ; show that the chord joining the
feet of the latter pair of lines touches the parabola whose
tangential equation is

@0 {a* X + b)) + mc* (B2 v + @ y'vh — @ B*Ap) = 0.

186. The locus of the intersection of lines making a con-
stant angle with a conic at the extremities of a chord which
passes through a fixed point is a curve of the third order (see
Conics, Art. 370, Ex.). If the fixed point is on the diameter
which cuts the curve at the given angle, the locus reduces to
a conie, as the diameter in this case is part of the locus. The
locus also reduces to a conic if the fixed point is at infinity.

187. From the point where a line making a constant
angle with the conic touches its envelope the two other lines
are drawn which make the same angle with the curve ; show
that the line joining their feet cuts a concentric conic at
a constant angle.

188. A conic circumscribes a fixed triangle, so that lines
making a given angle 0 with the curve at the vertices pass
through a point; show that the locus of its centre referred to
the triangle is the cubic

a

2 _ 2 B 2 _ 2 Y 2 _ Q2 -
sinA(B 'y)+sinB('y a)-l-sino(a ﬁ)+200t0aﬁy 0
(see Ex. 170).
189. If a, (3, v, & are constants, and «, y rectangular
co-ordinates, show that the line

ax cos ¢ + [By sin ¢ = y + & sin ¢ cos ¢

cuts at a constant angle a conic having the origin for centre.
Also show that this cannot be the case if « = 3.
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190. If three lines making the given angle tan™m with
the parabola »* — 4az = 0 at the points 7, ¥, ¥ pass
through a point, we find

2
Yo+t Ys = E“ (1)
Now N+ YotYstys=0

is the condition that four points on the curve should lie on a
circle; hence we see from (1), that the circle passing through
the three points meets the curve again in the fixed point

2a
Yy=="m

191. Triangles are inscribed in a parabola S, and circum-
seribed about a parabola §”; show that lines making a cer-
tain constant angle with S at the vertices of one of the
triangles pass through a point, and show that the locus of
this point is a right line.

192. If two lines are drawn through the point 3" on the
parabola 3* — 4az = 0, to meet the curve again at the angle
tan'm, we find that the equation of the line joining their
feet is

dmaz + (my’ - 2a) y + 2a (' + 4ma) = 0,
which, when ¢ varies, passes through the fixed point

_ 2

a
=, w= - (L4 200).

g =
The locus of this point for different values of m is the equal

parabola
y* + 4a (2 + 2a) = 0.
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IX.—OSCULATING CIRCLES.

193. A triangle is circumscribed about a conic =, and
inscribed in a confocal conic ='; to show that the osculating
circles at the points of contact of the sides are all touched by
the fourth common tangent of = and one of the circles
touching the sides.

If = and 3 are both ellipses, it is evident that the
tangents to =, at the vertices of the triangle, are the ex-
ternal bisectors of the angles ; hence its equation in trilinear
co-ordinates must be

af3 + By + ya =0,
and in tangential co-ordinates
= A+t v - 2ur - 20\ - 20 = 0. (1)
But = being confocal with " must be of the form ¥ + £Q,
where
Q=N+p*+ 1" —2uvcos 4 ~2vh eos B —2Au cos C'=0 (2)
represents the circular points at infinity ; hence, since = must
not contain the terms A% u?, v*, we have
S =M sin*3 4 + vAsin*3 B + Au sin® 1 C. (3)
Now S - (Asin®L B+ psin® L A)(IA + mp) =0 (4)

represents a conic having contact of the second order with =

on the side opposite the vertex v; and if we express that

this conic (4) passes through the points represented by Q =0,

we should obtain the equation of one of the osculating circles.
1
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‘We thus obtain the equation

) 21 2
Q_5x<2_?9_£3_1>+ﬂ<2—819—%4_1>+w$=0- ()

|\ sin® § sin*1 C
But this is evidently satisfied by

1 1 1
“osB-cosC M cosC-oosd’ ¥ cosd-cosB’

and these are evidently the co-ordinates of the fourth common
tangent of S and the circle inscribed in the triangle. The
three osculating circles have, therefore, this line for a common
tangent.

If = and = are not both ellipses, the osculating circles
are touched by the fourth common tangent of = and one of
the exscribed circles.

The above result can be readily proved by means of
elliptic functions; for, by Chasles’s theorem, the extremities
of the diagonals of the quadrilateral formed by the common
tangents of a conic and a circle lie on a confocal conic;
hence, from Ex. 44, we see that if four tangents are touched
by the same circle we must have

Uy + Uy + 2y + =0, or 4mI.

Now three tangents coincide at the point of contact of an
osculating circle ; hence, for the points of contact u;, uy, u, of
three osculating circles which touch the tangent «, we have

Su, +u =0,
whence w =- }u, and w,=—-Ju + 4K, us=- Ju+ $ K,

from which it follows that the tangents ui, us, u, are touched
by a circle touching u. There are nine osculating circles
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touching a given tangent, but six of these are imaginary, cor-
responding to the imaginary periods of .

194. Show that but one real osculating circle, besides the
one at the point of contact, can be described to touch a given
tangent to a parabola.

195. Six osculating circles of the curve

2 2

@y
*a—z + l—)i -1=0
are described to cut orthogonally the circle
S=a*+y*+202+2fy+c=0;
to show that their centres lie on a conic.
Expressing that the osculating circle whose centre is «, y
and radius s cuts S orthogonally, we obtain

200 +fy + e+ 2+t —9* = 0. (1)

But from the equation of the osculating circle (Conics, Art.
251, Bx. 3) wo have, in terms of the eccentric angle,

¢ c?
z=—cos*l), y=-—sin’l,
a b

2+ Yt — 1t = (a® — 20%) cos?0 + (0* - 2a%)sin* 0; (2)
therefore @a* + by = ¢t (1 — 3 sin®0 cos’l) ;
hence from (1) and (2) we obtain

(Rg +2fy +¢)* — (a* + b*) (g2 + 2fy + ¢) — 3 (a** + V*y/°)

+at+ b -atb? =0, (3)
which proves the theorem.
If the curve is an equilateral hyperbola, the conic (8) has
double contact with the curve.
196. If four osculating circles of the parabola y* — pz = 0
12
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are cut orthogonally by the same circle, show that the ordi-
nates of the poinfs of contact are connected by the relation

sIoo.
Y

197. Three circles osculate the parabola y* -~ pz =0 at

the points #i, %2, 5; show that the equation of the circle
cutting them orthogonally is

. 1
pﬁr+y5~5uﬁ—pmow—%0um—p9y

3,2
+éUﬁ—pmﬁ+f;=m

where D=2y Pe=ZhYs  Pa= il Ys

198. If the osculating circle of a conic cut the director

¢

3 .
circle at an angle 6, show that cos § = 2—‘2, where p is the per-

pendicular from the centre on the tangent at the point of
contact, and % is the radius of the director circle.

199. Let the tangent to a hyperbola at a point P meet
the asymptotes in 4, B ; if perpendiculars to the asymptotes
at A, B meet the normal at Pin A4’, B/, show that the middle
point of 4’, B is the centre of curvature at P.

200. The tangent to a conic S at the point P meets a
concentric, similar and similarly situated conic S in 4, B;
if the normals to S” at 4, B meet the normal to S at P in
A’, B, show that the middle point of 4A’, B’ is the centre of
curvature at P.

201. If S is the square of the tangent drawn from the
point whose eccentric angle is 6 on the conic

@
P

~1=0
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to the circle passing through the points a, (3, y on the curve,
we have, from Ex. 1,

S=a*cos* 0+8*sin* 0~ ¢* cos O {cosa+cos (3 +cosy+cos{a+3+7y))
+3c¢*sin 0 (sina+sin B +siny+sin (a+ 3 +7v))
+3¢* Seos (a+ ) - H(a*+ 1Y)
=1¢*{c0sR0 —cos(a+B+y - 0) + =cos (a+[3)-= cos (0 +v)}
=¢sint (@ +a+PB+y){sind (a+B+y~-30)
+8ind(0+a-B-y)+sin(0+L -y —a)+sind(0 +y —a-B)}
=4¢*sind(0+a+B+y)sind (0-a)sind (6-B)sink (0-v). (1)

Putting, then, a = 3 = y in this expression (1) for an oscu-
lating circle, we get

S =4c¢*sind (0 + 3a) sin® 4 (0 - a). (?)
Now if we have three osculating circles passing through
the same point on the curve, the eccentric angles of their
points of contact are connected by the relations (Conics, Art.
244, Ex. 3)

a-B=im a-y=im;
and then sini (0-a) +sind (0-8) +sind (0-v)=0. (3)

Thus we see from (2) and (3) that if the curve be referred to
three such osculating cireles S, S., S, its equation will be

V8 44/ 8, +3/ 8 = 0. (4)

If we substitute for S, S, S, expressions in Cartesian
co-ordinates, and clear equation M) of radicals, terms of
higher orders than the fourth will be found to vanish identi-
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cally. The result is then divisible by the square of the
distance from the point common to 8., S, S, and the re-
maining factor gives the equation of the curve.

202. Three osculating ecircles of a conic pass through the
same point on the curve; if ¢, x, ¥ are the angles at which they
intersect, and 4, B, C the angles of the triangle formed by
their points of contact, show that

¢$=34-m Y=3B-m x=3C-m.

203. Three osculating circles of a conic pass through the
same point on the curve; show that the triangle formed by
their centres is similar to the triangle formed by the extremi-
ties of the diameters conjugate to those drawn to the points of
contact.

3A]so shbow that the ratio of corresponding sides is equal

"

to i —er), where a, b are the semi-axes of the curve.
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X.—CONICS HAVING DOUBLE CONTACT WITH A
FIXED CONIC.

204. A conic has double contact with a fixed conio and a
fixed cirole ; to find the locus of the foci.
If the tangential equation of the fixed conic is
S=aN+ Put-1=0,
and that of the circle
S=@X+y -1 - (A ),

2
we have seen in Ex. 44 that, when = + % 3 breaks up into

factors, A* is a root of the cubic equation

/2 /2 ,’.2

r Y .
FrtEor Rl M

2
hence if we write = + }—&2 3 = EF, ()
r

where F and F are the extremities of one of the diagonals of
the quadrilateral formed by the common tangents of = and
=, the equation
2
0 E* +20<2 -% 2’>+F2= 0 3)

(see Conics, Art. 287) represents a conic having double con-
tact with £ and ®'. 'Writing this equation (3) in the form
2
(0F + F ~ 40 (a + Bu - 1) + 408 (X + ) = 0,
we see that the points

0E+Fi%—é\/6(a)\+ﬁu—l)=0 (4)
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are foci. Taking, then, the envelope of this equation (4), we
have, for the locus of the foci,

2
EF—:%(ak+ Bu -1y =0,

or from (2) S -+ p)=0, (5)

which represents the confocal conic passing through the
points E and F (see Ex. 44 (2)).

This conic gives the locus of the foci, when the major
axis of the variable conic passes through the centre of 2’;
for the points represented by the equation (4) are evidently
collinear with #'A + ’/u — 1 = 0, which represents the centre
of . When the minor axis of the variable conic passes
through the centre ¥, the foci are the anti-points (Salmon’s
Higher Plane Curves, Art. 189) of two points on the conic (5)
which are collinear with the fixed point #, y. To find the

locus in this case, let
2

| &
[

S t+i—-1=8=0

ES)

|
(S

be the equation of (5) in #, y co-ordinates; forming, then,
the equation of the chords of intersection of § and

(@-ay+(y-y)=0
(see Conics, Art. 370, Ex.), and expressing that this equa-

tion is satisfied by the co-ordinates of the fixed point, we
obtain the locus required

\2 7\2 xlz ?/2 ; 3 7 ) 3 ne
(=t =1 (Gt L= ) o P -4

/2 /2 2/ 2 2

& ) £ Y
~(leb/2('—,: + 1/_2_ =1 — k5~ 11=0.

a® b a0

A
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‘Writing this bicircular quartic in the form
(@-a)+ (y-y)+38 @ +y—a>- b))
=387 {(" + @+ o'}y + (@ + o)),
73

,_ @ ye
where Scﬁqtﬁ—l,

we see that it has two foci in common with =. We can also
show that the quartic has a node at the foot of the perpen-
dicular from #/, 4 on its polar with regard to S.

Hence the complete locus for the three systems of variable
conics consists of three confocal conics and three nodal bicir-
cular quartics. ‘

205. A conic has double contact with a fixed circle and
passes through two fixed points; show that the locus of the
foci consists of two confocal conics and two nodal bicircular
quartics.

206. A conic has double contact with a fixed circle and
touches two fixed lines ; show that the locus of the foci con-
sists of two pairs of lines and two cireles.

207. A conic has double contact with a fixed circle,
passes through a fixed point, and touches a fixed line; show
that the locus of the foci consists of two conics and two nodal
bicircular quarties.

208. A conic has double contact with a fixed circle and
touches two fixed conics having double contact with the
circle; to find the locus of the foci.

Let 2* + 9> —%k*= J = 0 be the @, y equation of the fixed
circle, and v* — A2 (\* + p?) = 0 its tangential equation; then

m (v =N+ u?)) - (ad+Bu+v) =0 @)

represents a conic having double contact with J. DBut the
pair of foci of this conic (1) which are collinear with the
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centre of J are evidently determined by the equation
al + Bu+vtmv=0;
hence we may write (1)
m* (v = B (A" = )} = {(m = 1) (&A + yu) - v}* = 0, (2)

where #, ¥ are the co-ordinates of one of the foci. Now, if
this conio (2) touch the conic

md (0 = B (X 4 ) = (= )k + ) = v} = 0,

we must have (Conics, Art. 387)
(= 1) (@2 + 47~ (L )} (= 1) (i + )= B (Lt )
—{(m = 1)(mmy = 1)y + yy) = & (1 + mm,} > = 05

but this relation can be written in the form
s 2 2m+115!(2 2 12 m1+1}é
:x +y +k<m~l>j+}x‘+‘%+k 1

={le-af+(y-y)*t=p say, (3);
hence, if the conic (2) touch two fixed conics of the system, we
have, from (3),

(oo £ p) = (/S £ V/8J, (4)
where Sy =+t + B <m‘ i 1>, S, = &e.
my — 1

But this equation (4) represents a pair of confocal conies, of
which each focus is also that of one of the fixed conics.
Taking account, therefore, of all the foci of the fixed conics,
we see that the locus consists of four pairs of conics whose
foci are formed out of the foci of the fixed conics. These
four pairs of conics give the locus of the foci when the major
axis of the variable conic passes through the centre of J.
‘When the minor axis of the variable conic passes through
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the centre of J, the foci are the anti-points of the imaginary
foci which are collinear with the centre of J. If 2,41, 223,
are the co-ordinates of the latter pair of foci, and @, y those
of a real focus, we have

2x=w1+x2i«/j(g/1—y2), 2y=?/1+?/24—-'\/_:_i (xl_xz)' (5)

But if @, 3 is a focus of the conic (2), it is easily shown that
the other focus is

1—m$ 1-m
Tim™ Tam?
and if (- ay+ (y - B)* = (az + by + ¢}’ (6)

is the equation of the locus of z;, ¥, we have, from (3),

w12+y12+k2%7—::i—1)=(am.+bg/, +c¢-4/8),
S+ 1
where S=a2+[32+k2(7—7’:/j:—1—);

hence :Z J_r i is equal to an expression of the form

ax + 0y + ¢
We have then, from (5),

2x=x1<1 + :—l'>i' «/_——1 ?/1(1 - i}:
v Y

/
2y=y1<1 + 1)? V-1 xl/l - E),
Y \ v
where y=dw + by + ¢,
and z,, %, are connected by the relation
(2 = a)*+ (11 = B) = (azy + by, + ¢)*.

‘We thus find, by eliminating #,, ¢, from these equations, that
the locus of @, y is a bicircular quartic. There are eight
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such quartics altogether corresponding to the different conies.
The entire locus thus consists of eight conics and eight
bicircular quartics.

209. A conic has double contact with a fixed conic, and
touches two fixed parallel lines; show that the envelope of the
asymptotes consists of two conies—concentrie, similar, and
similarly situated with the fixed conie.

210. A conic has double contact with two fixed confocal
conics; to find the locus of its foci.

Let
S =@\ 4 B - =0,

S=d?N+ -1 =0
be the tangential equations of the fixed conics, and let
at—at=0* -0 =hr, &-0=c.
Then 624 (A +v)*+20 (0*S+0*T) + 2 (A-v)*=0 (1)

represents a conic having double contact with = and %'
The axis of « is one of the principal axes of the conics of this
system.

To find the foci of (1), we have (Conics, Art. 258)

0@ -y")-2Ge+A-B=0, 2)
y(Cx - G)=0, ()
where C=t {00 +1)=2 (5 + 170,

G=ch? (0~ 1), A= B=cl*(0° +1)+2¢ (B + 1) 0;

hence, omitting the factor y = 0, and eliminating 6 between
the equations (2) and Cz — G = 0, we get
(0> +07)

x2+yztcx/~—1—~—bb, y-c¢ =0,
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which represents a pair of circles passing through the foci
and the intersection of = and X'
For the system of conics, one of whose principal axes
coincides with the axis of y, the locus is found to be
2, g, @A A7)

»+ytte s z+c=0.

The equation
Rreos O (N — ) + 27 sin A + S +2'=0 (4)

represents the system of conics having double contact with =
and 3, which is concentric with them. For this system the
equations for determining the foci are

-yt~ = Ntcosl =0, 2uwy-rtsinh=0;
hence the locus is

(@ + _1/2)2 —R (@ -y + ¢t = k=0,

which represents a confocal oval of Cassini passing through
the intersection of the given conics.

211. The director circle of the conics of the system (4) in
the preceding example is

2+t = (aF+ B+ ) =0,

which 1s absolutely fixed. This circle is the locus of points
through which tangents to = cut at right angles tangents
to =

Putting @ + 6 + #* = 0, we see that an infinite number
of equilateral hyperbolee can be described to have double
contact with the confocal hyperbole
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212. The differential equation in elliptic co-ordinates

du + dv
1@ =@ = @) L 1@ = =]
represents a system of conics having double contact with the
confocal conics u =a, v =d'; for, by the theory of elliptic

functions, the integral of this equation (1) can be written in
either of the forms

Ay + B o/ (@ = 1)@ = 7)) + €= 0,

-0 (1)

(2)
Aw + B /{(@ - -d?)}+ " =0,
where 4, B, &ec., are constants; and if we transform these
expressions (2) to Cartesian co-ordinates, we have

uv = ¢z,

xz yz

vl -a=a b 1= 5 )

hence, from (2), we see at once that (1) represents a conic
having double contact with the fixed conics. This equation
(1) belongs to the system of conics whose equation is given
at (1), Ex. 210. In a similar manner we can show that the
differential equation

Iu(l,l,l, + 'l/dl/

2 / - 2 /! 2 O, 3
N e e VA G CEr T
belongs to the second system of conies considered in Ex. 210.

Again, we can show that
du . dv
VA=) u'-a?) (@)} ~ /1 (=) (@ -v7) (@07}
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is the differential equation of the system of conics at (4),
Ex. 210.

From these differential equations we see that the two
conics of each system, which can be drawn through a point,
make equal angles with the conics confocal with the given
ones that pass through the point.

Also, if ¢ is the angle between the two conics of the
system (1), we have

u ~02)(a =) (v - ")
tandg = x/{ v)) (@ = p) (u* - a))’

and similar values for the other two systems.

213. If the normal at a point P of a conic of the system
(4) in the preceding example touches the conic u = a, show
the locus of P is the bicircular quartic whose equation to
rectangular axes is

(2* + = (7 + 2a%) & — (a” + 20%) o
+at+2a%ad* + ¢t = 0.
214. If a conio of the system (3), Ex. 212, cut orthogo-
nally a conic of the system (4) in the same example, show

that the locus of their intersection consists of the two circular

cubics
cx (@ + 9y tex—a* - b*) +a*a? = 0.

215. If two conies of the system (4), Ex. 212, cut each
other at right angles, show that the locus of their intersection
i the bicircular quartic

(2* + y2)2 (@ +ad?) - (B + %)y +a*a” + 807 = 0.

216. From the foci of the fixed conics tangents are drawn
to the systems of conics (1), (3), (4) Ex. 212; show that the
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equations of the loci of their points of contact are, respec-
tively,
02 02

m2+y’<1 +?)_2+W>—62:O’

m? yZ

ot O

¢yt + BPH = 0.
217. Normals are drawn from the foci of the fixed conics

to the systems of conics referred to in the preceding example;
show that the loci of their feet are, respectively,

2ry-d-0"=0,
P+ y-at-a* -+ ad® =0,
@+ )= (@ +d) o = (a*+ V) y* + a*d? = 0.

218. Normals are drawn from the centre of the fixed
conics to the systems of conics (1), (3), Ex. 212; show that
the loci of their feet are, respectively,

(@ + y2) = (6 + V) a® = (B + 0%) o + 007 = 0,
(& + y2)2 —(@*+d*) e — (@ + V)Y + a*a?= 0.
219. Show that the locus of the vertices of the system of
conics (4), Ex. 212, is
(2 + 12)® = (@ + &) (& + ¥*) + 269" (2* + o)
+ @t + Byt = 0,
220. Show that the loci of the vertices of the systems of
conics (1), (2), Ex. 212, are, respectively,
02y4 — 62y2 (62 + b’?)_ 626’2 (xZ . 02) = O’

cat — ¢*at (af + d*)+ a*d? (Y + ¢*) = 0.
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221. Tangents are drawn from the centre of the fixed
conics to the systems of conics (1), (8), Ex. 212; show that
the loci of the points of contact are, respectively,

(@a”y* + b (2* + y*) — ot y’ — Dt = 0,
(@Pa?y® + b7 (2* + o) — 2P y* + Pyt = 0.
222. If A, A; are the roots of the equation

2 2

z y* 3

et tae 0

where z, y, ¢ are trilinear co-ordinates, show that the diffe-
rential equations
X, . dX,
14 N W Ny W 1 3 Wt e Wy
dX N dX, -0
VA=) A=a)(A-a) A=)} T v/ { A e) Arma)Aema)A—f3)} 7
X, N X,
vV {A=a)(A=0)(A=a)A=3)] T v/ { (A=) (A= 0)(Ae=a) (A—f3)

represent the three systems of conics having double contact
with the two fixed conics of the system (1), corresponding to
the values

=0,

=0

A=ga, A=p.

223. A variable conic has double contact with two fixed
conics ; show that its director circle cuts orthogonally one or
other of three fixed circles.

Also show that each of these fixed circles passes through
the extremities of a diagonal of the quadrilateral formed by
the common tangents of the two fixed conics.

K
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224. In the preceding example, show that the variable
director circle has double contact with one or other of three
bicircular quartics, which reduce to cubies if one of the fixed
conics becomes a parabola.

225. A parabola has double contact with a fixed conie,
and fouches a fixed line; to find the envelope of its directrix.

Let the tangential equation of the fixed conic referred to

its axes be
N+ Pt = =0, (1)

then @A\ + 62,112 -+ (al + B,u + v)"’ =0 (2)

represents a parabola having double contact with (1).
Now, the directrix of (2) is (Conics, Art. 294)

Qaz + 2By — (¢ + B + o + ) = 0, 3)
and if (2) touch the fixed line & + my + n = 0, we have
la + mB +n /(0 - a*l* = b*m?) = 0. 4)

But the envelope of (3), subject to the condition (4), is found
to be

(1 + m)(@? 4y = @2 = b)) (Lo + my + n %o/ (0F = @21 = ) | 2= 0,

which represents two parabole having double contact with
the director circle of the fixed conic (1).

226. In the preceding example, show that the locus of
the foci of the parabola consists of two circular cubics with
nodes (see Ex. 87).

227. An equilateral hyperbola has double contact with
the fixed conic
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and passes through the fixed point #’, ’; show that the locus
of its centre is the bicircular quartic

{a?t? (2 + ) ~ (@* + b*) (DPa’ + ayy))?
~(a*+ 0*)(0*a* + &y — a*b°) (b + a*y*) = 0.
228. Show that an infinite number of equilateral hyper-

bolee can be described to have double contact with the fixed
conics whose equations to rectangular axes are

@

2 2
;5 + '%2 -1= O,
@@ + 02y =2 (a°+ B (az + By) + (¢ + ) (a® + ) + *b* = 0.

229. An equilateral hyperbola has double contact with
the parabola y* — 4ma = 0, and passes through the fixed point
2,4 ; show that the locus of its centre is the conic

(" - 4ma’) (y* + 4m) = (yy + 2ma — 2ma’ + 4m*)* = 0.
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XI.—RELATIONS OF A CIRCLE AND A CONIC.

230. A circle S intersects a conic in four points; to show
that perpendiculars at these points to the radii vectores drawn
from a focus are all touched by a circle §'.

Referring the conic to one of its foci, its polar equation is

r (1 + ecos 0)=1; 1)
and if the equation of S is
r* — 2 (a cosO+ 3 sinb) + £*= 0, ()

we have for their intersection, eliminating » between (1)
and (2),
1*~21(1 +ecosl)(acosf + [3sinl) +£* (1 +ecosf)* =0,
or *+k + (Ke*—2lea) cos’0 + 2 (ke — la) cos O
- 2B sinh — 2/ef3 sin cosf = 0. (3)

Now, the equation of the perpendicular to a focal radius
vector at its extremity is
)

zcos +ysinf=9r=-——;
Y 1+ ecosh’

and if this line touch the circle

(e =)+ (v - B) -1 =0,
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wo must have
(o’ cosO + 3 sin@ — ) (1 + e cos@) — /=0,

or {+ 7 ~ed cos?0 + (er — a’) cosO
~ 3 sin 0 —¢3 sin@ cos0=0. (4)

But it is easily seen that the relations (8) and (4) will coin-
cide if

la'=Rla ~ ek?, (=28, b=k;
hence we see that, being given S in the form

2+ Y~ Rax - 2By + =0,

the equation of §" is

2

2 4
<x~2a+€f—>+(y—26)2=%.

‘We can also show in the same way that the lines bisect-
ing the focal radii vectores at right angles are all touched by

the circle
eh*\2 LW
(e-at )+ 0B =g (5)

From this we can readily obtain a proof of Ex. 19; for
when the curve is a parabola, ¢ = 1, and the circle (5) then is
satisfied by the co-ordinates of the centre of S.

231. If the circle S in the preceding example cuts a fixed
circle orthogonally, show that the circle S cuts a fixed line
under a constant angle.

232. To show that the algebraic sum of the reciprocals
of the common tangents of a circle and a conic is equal to
Zero0.



134 RELATIONS OF A CIRCLE AND A CONIC.

The equation of the conic being

x2

az

+ %—z -1=0,
the equation of a tangent is

zeosw + ysinw —4/ (¢* cos’w + B 8in’w)=0; (1)
then if p is the perpendicular on this tangent from the fixed

h ’ / d . .
point &, ¢/, we know that c—li), is the reciprocal of the common

tangent of the conic and a circle whose centre is 2/, ¢/, and
radius p. Ience, considering the four common tangents of
the conic and circle, p is the same for all, and we have

1 4
Egzd—pEw. (2)

But if we express that the line (1) touches a circle whose
centre is #/, ¢/, and radius p, we get

¥ cosw + ¢ sinw — p — /(@ cosfw + B*sin*w)=0; (3)
and putting, then, e**'= ¢ in this equation (3), it becomes

{(x,_ _l/\/:_i)zz— 2])2 v y;/__1‘}2_ {czz4+ 2(a2+ b2)22+ 02}= 0’

or {(—y/=1y—cjz+ . .. +@+y/=1)=¢=0, (4)
from which we readily deduce that 2w = 4¢, where
Qx/y/
tan 2¢ = m:_cz’
hence, since Sw is independent of p, we see from (2) that
1
24 ? = O.

If the circle touch the conie, by drawing two tangents to
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the curve indefinitely near one another, we obtain the follow-
ing values for the lengths of the common tangents ¢, #,

ti=1 (o —7)dh + ) p cot pdl,
t=13(p—7) dO - % p cot pdl?,

where » is the radius of the circle, p the radius of curvature
of the conic at the point of contact, and ¢ the angle which
the diameter of the conic at the same point makes with the

curve; hence, by proceeding to the limit, in this case I ty
2p cot ¢ b
(p~n"

233. To show that a circle meets a conic at angles the
sum of whose co-tangents is equal to zero.

If a circle of fixed centre and variable radius » meet the

curve at an angle i, we have

is replaced by

ot =4,

where w is the angle which the radius makes with a fixed
line; hence, for the four points of intersection, since r is the
same for all,
rd .
).4 COtgL == ;l": Z(U. (1)

But since a pair of chords of intersection of the conic and
circle are equally inclined to an axis of the conie, it easily
follows that Sw is constant; hence, from (1),

S coty = 0.
If the circle touch the conic, the sum of two co-tangents
21* cot
must be replaced by (:;—i%‘—q;, where 7, p, ¢ have the same

meaning as i the preceding example.



186 RELATIONS OF A CIRCLE AND A CONIC.

234. If = is the sum of the squares of the lengths of the
six chords of intersection of the conic

a’Z yz
247 _1=0
a* T 1 ’

(@-af+(y-B)-r=0,

(b4a2 + a«iBZ)
@ =0 )

and the circle

to show that
=16 {,,42 -

Eliminating ¥ between the equations of the circle and
conic, we obtain

ot - 4a*caz® + 207 {(3a® - V) o + (a® + %) (3*
-+ bttt + ... =0,
where ¢® = a* - 5*; hence from this equation we have
2 (7 — 2, = 1622 (0%’ ~ (@ + b°) 3% + ** - b*¢*);

and similarly, by eliminating @, we obtain from the equation
n y
¢S (s — 1) = 160 {a*3? - (a® + B*) a® - ¢ + a’c’};

hence S =3{(m - @) + (1 — ¥2)°)
4.2 412\
— 1612 - Mc{i@_) .

235. If = is the sum of the squares of the lengths of
the six chords of intersection of a circle and the parabola
4* - px = 0, show that S =4 (8* - p*), where J is the intercept
which the circle makes on the axis of the parabola.

236. To find the sum of the angles (s) at which the circle

¥4y~ 2ar - 2By + I =0
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2 2
cuts the conic Ly ‘Zg -1=0.
@ b
If 2w and =0 are the sums of the angles which the tan-
gents to the conic and circle at their intersection make, re-

spectively, with the axis of #, we have
s = Sw - =0.

But since a pair of chords of intersection of the conic and
circle are equally inclined to the axis of #, =0 = 0 ; therefore

$ = 2w, (1)

But substituting the co-ordinates of a point on the conic
expressed in the form

a* coSw V*sinw

2= - =—
/(@ cos® w + b*sin’w)’ y v/ @ cos’w + b sin’ w)

in the equation of the circle, we get
{a* (a* + &*) cos®w + * (B* + K*) sin® w}2
~ 4(a%a cosw + B*PBsinw) (¢ cos’w + *sin’w)= 0. (2)
Putting, then, ¢*** = z in this equation (2), it becomes
(¢ (@ + 0+ 192 - 4 (cPa + BB /-1 st + . . .
+ (@ + b+ B - 4 (afa - BB /-1)7 =0,

from which we obtain

¢ (@ + 8+ 4%’ ~ 4 (ata® - U'B") + 8azb2g@3{;1 3

1w o

F(a? + 18+ B2 4 (a'a® ~ 0'(3%) - 8l a3/ ~1 ’
( )
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hence from (1) and (3) we have at once

820" afs |
¢ (@ + 0+ 1) - 4 (aa® = 037

tan s =

237. If s is the sum of the angles at which the circle
24y —Rax - 2By + =0
cuts the parabola y* — dmax = 0,
4np

ShOW that tan s = ]mz;

hence also show that when s is given, the circle cuts orthogo-
nally a fixed circle having its centre on the directrix and
passing through the focus.

238. To find the equation which determines the lengths
of the perpendiculars from the origin on the common tan-
gents of the circle

(o= + (= By - =0,
and the conic — 4+ -1=

Expressing that the tangent
zeosw + ¥ sinw — /(@ cos’ @ + b*sinw) = 0
of the conic touches the circle, we obtain
acosw + Bsinw- (p + 1) =0, (L
where Pt = a® cos’w + b? sin*w. )
But from (2) we have

cCosw =,/ (p* = 0%, csinw =,/(a"~p');
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hence (1) becomes
ay/ (" =)+ By (@ -p)~c(p+r)=0. (3)

COlearing, then, (8) of radicals, we have the required equation.
From this result we find that the product of the four perpen-
diculars is equal to

2;2{ et = 269 (a3 - Ua?) + (0a® + &*3)%),
where p, p” are the distances of the centre of the circle from
the foci. We find also that the algebraic sum of the perpen-
diculars is

4yc? . s

a«ﬁ(az - B =)

239. If A is the area of the triangle formed by the

centre of a conic and the points of contact of a common
tangent of the conic and a circle, show that

A=Lpp’sinlasinlFsinly,

where p, p” are the distances of the centre of the circle from
the foci of the conic, and «, 3, v are the angles which the
common tangent makes with the three other common tan-
gents.

240. Show that the product of the lengths of the common
tangents of the circle

(@-a)+(y-Lr-r=0
2

2
and the conic %Jr%z—l:O

(bt = b2 (B2 = B2 (hs* = h2)?

is equal to gy
et = e (@3 - B*a?) + (3% + 0°a?)
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where %%, &%, ks are the roots of the equation

a2 B2 /’AZ
PRy

241. Show that the product of the lengths of the common
tangents of the circle

(0= sy~ B~ =0
and the parabola ¥ —pr=0
is equal to a0t (B = Bo)? (ks — Bo)* (B — )7
where %, %, k; are the roots of the equation
4’k + dm (a + m) B+ (r* + dma — B3k + 7 = 0.

242. To find the angles at which a ecircle cuts a conic in
terms of the angles which their chords of intersection make
with an axis of the conic.

The equations of the conic and circle referred to trilinear
co-ordinates being written

3y + mya + na3=0, By sin A+ yasin B+ sinC=0, (1)

where a, (3, y are the sides of a triangle formed by their
intersection, the tangents to these curves at a, (3 are

B+ma=0, Bsind +asinB=0; ()
and if ¢ is the angle between the lines (2), we easily find

({cos B—mcos A4)
(sinB-msin 4

cot ¢ = sinC (3)
But substituting

weosa+ysina-p, zcosB+ysind-p, @cosy+ysiny-p;



RELATIONS OF A CIRCLE AND A CONIC. 141

for a, 3, v, respectively, in /3y + mya + naf3, and equating
the result to

@

St E T 1,

we obtain, by comparison of the coefficients of #*, 4* and zy,

1(a* cos 3 cosy — b* sin B siny) + m (4 cosy cosa — b*sina siny)
+n(a® cosa cosB —b* sinasinf3) = 0,

Isin(3+y)+msin(y + a) + nsin (a + 3) = 0,

from which we may assume /, m, », respectively, proportional

to

(a*cos’a + b*sin*a) sin (3 —y), (a*cos’ (3 + b* sin® 3)sin (y ~ a),
(a? cos’*y + b°sin’vy) sin (a — [3); 4)

hence, substituting these values (4) in (3), and putting for

A, B, C their values in terms of a, 3, y, we obtain, after some
reductions,

20 + ¢*{sin*a + sin* 3 + sin’*y —sin® (a+ B - )}
2¢*sin (y — a) sin (3 - y) sin (a + (3)

cgtp = . (8
Since the pairs of chords of intersection of a conic and a
circle are equally inclined to an axis of the conic, we obtain
the expressions for the other angles of intersection by chang-
ing the signs of «, 3, y in (5). The most symmetrical ex-
pression is obtained by altering the sign of y in (), when
we have
21* + ¢* {sin® a+ sin® B + sin®y —sin® (a + (3 + y)}
2¢*sin (a + [3) sin (3 + ) sin (y + a)

cot ¢ = -(6)

If we put a = 3 = y in (6), we obtain an expression for
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the angle at which the osculating circle at any point of a
conic cuts the curve again.
For the parabola we have

sin*a + sin*3 + sin’y - sin® (a + 3 + )
2sin (a + (3)sin (B +y)sin (y +a)

cot ¢ =

From the expressions obtained above for the angles of

intersection of a conic and a circle we can easily verify the
theorem of Ex. 233.

243. Let
§= (e~ o)+ s~ B -,
S =(x-a)+(y+B)-1;
then, if S8 +4A (b*2* + a*y* — @*0)

breaks up into two circles, show that A is determined by

the equation
az bZ B b2a2 N 7,—2 B a2 3 0
B-A BFP-A@-0) A e

244. Show that the product of the perpendiculars from
the origin on the tangents to the conic

at the points of intersection with the circle

¥+ Yt = Raw - 2By + K =0

) L 2biet
is equal to TGy
where P=c(a®+ 0 /;,2:)‘2 — 4 (aﬁﬁ’ - {"{‘,)-"3,\1,

@ = 8¢ & of3.
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245. If p is the perpendicular from the centre of a conic
at a point of intersection with a circle, and ¢ the angle under
which the conic and circle cut at the same point, show that,
taking the four points of intersection,

Lo
Sln(p
246. If four tangents to a conic are all touched by a
circle, show that their points of contact are situated on a
conic having double contact with the director circle at the
points where it is intersected by the polar of the centre of

the circle with regard to the given curve.
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XII.—CIRCLES RELATED TO A CONIC.

247. To find the equation of the circle described on a
chord of a conic as diameter.

Let

2
@
a

2+%§—1=0 )

be the equation of the conic, and

e +my—-1=0 ()
that of the chord.

Now, the equation of the circle described on the line
joining the points #, y1, . y., as diameter, is

Py -t -+ Y)Yy ez + ny.=0,

or, in terms of the eccentric angles a, 3 of two points on the
conice (1),

@ + y* — @ (cosa + cosf3)x — b (sina + sin 3) ¥

+ a*cosa cos5 + b sina sinf3 = 0. (3)
But, comparing

Scos%(a+ﬁ)+%sin%(a+ﬁ)—cos% (a-P)=0
with (2), we obtain
costla+B)=alcos}(a - 3), sin} (a + 3)=bmcosi(a-f3);
hence (3) becomes
(@1* + Um?)(@* + ) - 2a*le - 20°my + a* + B*
=@ (P mY) =0, (4)
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By writing (4) in the form

2y ¢ (a*+0°)
(l2+mz)<g+zz~-1>+(;2?2(lx+my—l) le - my — 7 =0,

we see that the circle meets the conic again on the line

2 2\
lx—mg/—(a;b)zO. (5)

248. Writing the equation (4), in the preceding example,
in the form

(@ =) + (y —mb) + (@1 + b'm? = 1)(2* + y* —a® — 1) = 0, (1)

we see that this circle never meets the director circle in real
points, except in the case when it touches it. It also follows
from this equation (1) that the pole of a chord is a limiting
point of the director circle and the circle described on the
chord as diameter.

If we seek the length ¢ of a common tangent of the
director circle and the circle (4) in the preceding example,
we easily find

i/ @+ )1 - a’l® - b'm?)) +aby/~1./(1* + m?)
n @ T o)

)

hence, being given the sum or difference of the external and
internal common tangents, the chord is either parallel to a
fixed line, or touches a concentric, similar, and similarly
situated conic. Also given the product of these common
tangents, the envelope of the chord is a concentric conic;
and given their ratio, the envelope is a confocal conic. In
all these cases, of course, the given conie is a hyperbola.
L
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249. The circles of the system (4), Ex. 247, touch the
given conic; show that the envelope of the chords is

5 4
Y 14

T @y

250. Show that the circles described on parallel chords
of a conic as diameters have double contact with a fixed
conie.

251. If we express that the circle (4), Ex. 247, cuts
orthogonally the circle

2+ Yt = 2ax - 2By + k=0, (1)
we obtain
@ (B =01+ 00 (B = a)m* — 2a*al = 20° B + a* + 0P =0, (2)

showing that the chord in the same case touches a fixed conic,
of which () is the tangential equation. If we have

_afai% b‘ZBZ
A.Z _ bZ ]&'2 _ a2

2 2
=a* + 0,

the conic (2) breaks up into two points.

Now this relation (3) is the condition that the circle (1)
should be the polar circle of a triangle formed by two tan-
gents and their chord of contact (see Ex. 79, (2)).

If /, m are the co-ordinates of the line joining the two
points into which (2) breaks up, we have, by differentiation,

B-Wl=a, (F*=d)ym=, ldda+ mb3=a"+; (4
) ( )
@

and if we put l= o Mm=

~

0

=
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in these equations (4), where /,  are the co-ordinates of the
pole of the line, we find

ca?
a+ 0 - ),
pe

a’
> a* + b +—r’2+ &

(?_

These values of «, 3, 4 (see Ex. 78, (1)), show that the circle
(1) is the polar circle of the triangle formed by the tangents
from o/, 4" and their chord of contact. Thus we see that if

52?/-

the circle described on the chord as diameter cuts orthogo-
nally the polar circle of a triangle formed by the tangents
from a point P and their chord of contact, then the chord
will pass through one or other of two fixed points lying
on the polar of P.

If @), 4, are the co-ordinates of one of these points, the
co-ordinates @, ¥, of the other are

c* 2, B ¢ ”

W= = Y= 3 —
@ + b* 71 z/, @+ 0wt y®

2 — T
b @ b

and the two points are reciprocally related.
252. For the equilateral hyperbola 2* — y* — ¢* = 0 the
equation (4), Ex. 247, becomes

(02 — ) (@ + y*) — Rle + 2my + & (I + m?) = 0
hence, if two circles of this system cut each other orthogo-
nally, we get

U =t - @ (U + mnd)= 0,
L2
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which breaks up into the factors
W—-mm' =0, II'—mn —a*=0.

In the first case, the chords are rectangular, and in the
second case, conjugate with respect to the curve. Thus we
see that circles described on conjugate or rectangular chords
of an equilateral hyperbola, as diameters, cut each other
orthogonally.

253. Show that the circle described on the chord o+ my -1=0
of the equilateral hyperbola 2* — »* — a* = 0 is the polar circle

of the triangle formed by the tangents from the point %,%

and their chord of contact.

254. Show that the circle described on a chord of an
equilateral hyperbola as diameter meets the curve again
at the extremities of a diameter of the curve.

255. If the circle

2+ —L2ax - 2By + K =0

passes through the extremities of a diameter of the conic

2

@ v

a2 + bZ 1 O’

K 72
show that o <1 + ?>+ 3 <1 + (—&—2> =0.

256. Through two points 4, B on a conic U a circle S is
described, whose radius is equal to the semidiameter of U
parallel to 4B ; show that two common tangents of S and U
are parallel to one another.

257. Through a pair of points 4, B on the ellipse

2 2
%i-l:o
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two circles are described to touch the curve elsewhere; show
that their points of contact are at the extremities of a
diameter, and that, if », " are their radii, and & the dis-
tance between their cenfres,

a -0\, A,_(a2+bz),
8‘< A >b, rrl =g v,

where & is the length of the semidiameter parallel to 4B.
Show also that the length of their common tangent is equal to

@ - b
< 2ab )d’

where d is the length of 4B.

258. Show that the angle between the two circles re-
ferred to in the preceding example remains the same if the
chord AB always touches a fixed concentric, similar, and
similarly situated conic.

259. Through a pair of points on an equilateral hyper-
bola two circles are described to touch the curve; show that
their radii are both equal to the semidiameter to one of the
points of contact.

260. Through two points on a hyperbola two circles are
described to touch the curve elsewhere; show that the sum
of their radii is equal to the length of the diameter conjugate
to that passing through the points of contact.

261. A circle S is described through the points where the

line
e +my—-1=0 (1

. 22 Z/Z
meets the conic 2t '55 -1=0,

so that these points subtend an an angle ¢ at the circum-
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ference ; show that S meets the curve again at points lying
on the line

(a* = %) (e — my) - (a® + b*) = 2ab cob ¢ / (a*1* + b*m* - 1) = 0. (?)

262. If, in the preceding example, one of the points
where the line (1) meets the curve is fixed, show that the
line (2) passes through a fixed point on the conic
Syt (@ + ) 4at b oot? ¢

@ + o (@ - bg)z ’

If the line (1) touches a concentric, similar, and similarly
situated conic, show that the line (2) will touch another one.

263. A circle S passes through the centre of the conic

2 2
g; + % -1=U=0;
show that the product of the perpendiculars from the centre
of U on a pair of chords of intersection of § and U is equal
to
a*b*

264. A circle touches two fixed tangents to a conic; show
that a pair of its chords of intersection with the conic are
parallel to given lines.

265. A circle passes through two fixed points on a conic;
show that the extremities of one of the diagonals of the quad-
rilateral formed by the common tangents of the circle and
the conic lie on a given confocal conic.

266. Tangents are drawn from the point whose elliptic
co-ordinates are u, v to the ellipse
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show that the equation of one of the circles touching the curve
and these tangents is
xz+g/2—20£Px—%J(cz—vz)(aP—cz)y+v2-a’—c’+2aP= 0,

a/(p* =) —bu
P- , @b =
Vv (=) =0

2

where ¢

(see Ex. 44, (6)).
Hence show that if the intersection of the tangents lies on
a confocal ellipse, the locus of the centre of the circle is an
ellipse.
267. A circle = cuts the circle S = 2* + y* — &* = 0 ortho-
gonally, and touches the conic

V =ax® + by* + 2hay + 292 + 2fy + ¢ =0;

show that the equation of the reciprocal polar of the locus of
the centre of = with respect to § is the trinodal quartic

BV - eS)* + 4k (9o + fy + ¢)*S = 0.

268. Through the four points on the conic

x‘l 2

Yy

E'I-b,;,'—lzo,

whose eccentric angles are a, (3, — a, — {3, a circle is described ;

if @ is the angle subtended by «, (3 at the centre of the circle,
show that

tan 16 =L—Z tan 4 (a— f3).

269. A circle S described on a chord of the equilateral
hyperbola «® - 4* — a* = 0 as diameter cuts orthogonally the

circle
&yt =2 - By + K =05
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show that the locus of the centre of S is the nodal cubic
2(az + By)(@* = *) - (@ + F)a* - (@® - §)y* = 0.

270. A circle S described on a chord of the parabola
y* —pz =0 as diameter cuts orthogonally the circle

2yt -k =0

show that the locus of the centre of S breaks up into two
parabolee.

271. PP, QQ’ are fixed chords of a conic parallel to an
axis of the curve; if a circle through P, P’ intersect a circle
through @, @ on the curve, show that the distance between
their centres is constant.

272. A conic passes through two fixed points and touches
two fixed lines; show that the envelope of the director circle
consists of two nodal bicircular quartics, the node common to
each being the intersection of the fixed lines.
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XIIL.—RECIPROCAL TRIANGLES.

273. To find the condition that a conic S, should circum-
scribe a triangle A, whose reciprocal triangle with regard to
S is self-conjugate with regard to S..

If we take the reciprocal conic of S, with regard to &S, this
conic must have the triangle A for a self-conjugate triangle,
and, therefore, satisfy an invariant relation with S,. Refer-
ring the conics to the common self-conjugate triangle of S
and S, we may write

S =a+y+2

|

S, = ax® + by + ¢,
Se=(d, U, ¢\ F o5 W)y, 2)'
and the reciprocal of S; with regard to S is then
(4,B,C,F, &, H) (2, y, 2)" =0,

where A4, B, &c., are the coefficients in the tangential equa-
tion of S.. The required condition is then found to be
(Condes, Arxt. 875),

ad’ + 0 + ed’ = 0. (1)

But if 6., O, O, are the coefficients of n?, mn?, lmn in

the discriminant of
I8, + mS, + nS,
we have
913:’,:(l+b+c, 9233=a'+b'+c',

Oum=d(b+c)+V(c+a)+c(a+d);
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hence, from (1),
9133 9233 = AelZB) (2)

where A is the discriminant of §. This condition (2) is
symmetrical between the coefficients of S, and S;, and, there-
fore, when it is satisfied, it follows also that triangles can be
inscribed in S,, whose reciprocals with regard to S shall be
self-conjugate with regard to S..

If §; and 8, are the circles

Si=a*+ ¢ - Layw — 2Py + ki,
Se=a* + 4 - Rayw — 23y + £,

and § is the conic

the condition (2) gives
kP kS - 2 (Pavan + 0*31f3.) + a* + b* = 0. (3)

Since a self-conjugate triangle is its own reciprocal with
regard to a conic, it follows that the polar and circumscribing
circles of such a triangle are connected by the relation (3).

The same relation will also connect the polar and circum-
seribing circles of a circumscribed triangle A with the cir-
cumscribing and polar circles, respectively, of the triangle
formed by the points of contact of the sides of A ; for these
triangles are evidently reciprocal with regard to the curve.

274. If in the preceding example the conic S and the
circle S, are fixed, show that the circle S, cuts orthogonally
the fixed circle

kP (2 + %) — 2% e — 20 Bry +at + b* = 0.
275. Show that the intersection of the perpendiculars of
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a triangle formed by three tangents to an equilateral hyper-
bola and the centre of the circle passing through the points
of contact of the tangents are conjugate with respect to the
curve. Show also that the centre of the circle circumseribing
the first triangle and the intersection of the perpendiculars of
the second are conjugate with respect to the curve.

276. If we suppose the conics S, and S, in Hx. 273 to
coincide, we see that if a conic U be such that an inscribed
and a self-conjugate triangle are reciprocal with regard to a
conic ¥V, we must have

0% = 270/, (1)
where AR+ OF + Ok + A )]

is the discriminant of ¥ + kU. The relation (1) expresses
that the sum of the squares of the roots of (2) is equal to
nothing. In this case, therefore, the conics U and ¥ cannot
intersect in more than two real points.

277. In the same way as at Ex. 273 we can find the
relation which must exist, if a conic S, touch the sides of a
triangle whose reciprocal with regard to S is self-conjugate
with regard to S;. This relation is ©;, Oy = @, where P is
the invariant which corresponds in tangential co-ordinates
to Oy

278. If the conic 8, circumscribe one triangle and 8.
another, and if these triangles are reciprocal with regard to
a conic S;, we find, with the notation of Ex. 273,

(_elaa Oay3 — Aem)z =4A* (9311 O3 — ‘1)>-

279. If we suppose the conics S; and S, in the preceding
example to coincide, we obtain the condition that a conic U
should circumseribe two triangles which are reciprocal with
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regard to a conic . This condition breaks up into the
factors
6 = 07 (1)
0" - 4400’ + 847A% = 0. @)

The condition (1) only relates to the case when the tri-
angles coincide and become self-conjugate with regard to V.

It may be observed that when (2) is satisfied it is possible
to circumseribe about 7 an infinite number of quadrilaterals
which have the extremities of two of their diagonals on U,
and we can see how this is the case; for, if we suppose two
sides of the quadrilateral to coincide, it will become a triangle
formed by two tangents of 7 and their chord of contact, and
such a triangle is its own reciprocal with regard to V.

280. If ¢ is the length of the tangent drawn from the
centre of an equilateral hyperbola to the circumsecribing circle
of a triangle whose area is A, and #, A” are the correspond-
ing values for the reciprocal triangle, to show that

£ e
AT

Since the polar of the point 2/, ¥ with regard to the
equilateral hyperbola #* —¢* ~a* = 0 is o’ — yy' —a* = 0,
and with regard to the circle «* + * —a* =0 is a2’ +yy - a*=0,
it follows that the reciprocals of a given triangle with regard
to the hyperbola and circle are their mutual reflections with
regard to the axis of . It follows then that if the relation
stated above is true for a circle, it will also be true for an
equilateral hyperbola.

Let #1391, 29, 4595 be the co-ordinates of the vertices of
one of the triangles, then we have (Conics, Art. 94),

208 = Z(ay: ~ yaws) (2° +4*) = prpape Tprsin (6, - 6), (1)
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transforming to polar co-ordinates ; but if the circle is
aZ
Z+yt-at =0, p1=;, &e., 0,= wy, &ec.,
1

for the reciprocal triangle; hence (1) gives

8

QAL = T S pps sin (w, — ws). (2)
Now =p, p. sin (w; — we) is equal to Ve ¢%; thus(2)becomes
5 a® AtE?
N T ®)
Again, we have
4 . . 4 A’
2A=3p,p,sin (01—02):—61—— Sp8in (we—w;) = _L 2 (4)

(Prp2ps) (prpaps) B

Hence, eliminating (p: p. ps) between (3) and (4), we obtain
the relation given above.

281. Let p, be the lengths of the tangents drawn from
the centre of a circle or equilateral hyperbola to the polar
and nine-point circles, respectively, of a triangle whose area
is A, and let p’, #’, A" be the corresponding values for the
reciprocal triangle, then show that

A —_ 2
T 2AYT

n® = oA P, w?

282. If two triangles are inscribed in a circle so as to be

polar reciprocals with regard to an equilateral hyperbola,
show that their areas are equal.

283. Let lines drawn from the centre of a conic to the

vertices of a triangle whose area is A meet the sides of the

triangle in L, M, N; if the area of the triangle LMN is
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equal to 4, and 4’, A" are the corresponding values for the
reciprocal triangle, to show that i:i = —g,

Let 2,91, @292, 2535 be the vertices of one of the triangles;
then if « is the angle between the polars of ¥, .y, with
regard to the conic

2 212
%+§-1:m
we have
sin a = %(mlyz—ylrz); (1)
but
. ’ AP pap
Episinas= 5= from (1), —716_“42_3 ; (2)

therefore, from (1) and (2),

2R sin ap, XYy =

A A ®)

Hence, if zys, 2'y's" are the areal co-ordinates of the origin

7

with regard to the two triangles, we have, from (3), §= Z—,,
and by symmetry for the other sides,
o ST
Now it can be shown that
_ 2A zyz - QAT Y )
@)y +2)(s+2) @+ 9y +%)(F +a)’

7

hence, from (4) we have g 4
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284. If two triangles, reciprocal with regard to a conic U,
are such that their centroids are conjugate with respect to 7,
show that a conic circumscribing either triangle, so that the
tangent at each vertex is parallel to the opposite side, will
pass through the centre of U.

285. Two triangles, polar reciprocals with regard to an
equilateral hyperbola, are such that their circumscribing
circles pass through the centre of the hyperbola ; show
that they are similar to one another.
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XIV.—MISCELLANEOUS EXAMPLES.

286. A. series of comics are circumscribed about a
fixed quadrilateral ; to show that the envelope of their
director circles is a bicircular quartic, of which the inter-
sections of the diagonals and opposite sides are foci.

Since the locus of the centre of the variable director circle
is a conic passing through the intersection of the diagonals
and opposite side of the quadrilateral, and since it also cuts
orthogonally the circle passing through the same points, its
envelope is a bicircular quartic, of which the intersection of
the fixed circle and conic are foci. The fourth focus of the
quartic, it is easy to see, is the centre of the equilateral hyper-
bola which civcumseribes the quadrilateral.

‘We may obtain this result analytically, as follows :—

Let the equation of the conic referred to the fixed self=
conjugate triangle be

la* + mf3 + ny* =03 (1)

then the equation of the director circle is (Conics, Art. 383)
mn (3* + y* + 23y cos 4) + nl(y* + o + 2ya cos B)

+Im (a® + 3% + 2¢f3 cos C)= 0

or, if p1, ps, ps denote the distances of a point from the ver-
tices of the triangle of reference,

mnsin® Ap* + nlsin® Bp,® + I sin® Cp,® = 0. (?)
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But if «, (3, y’ are the co-ordinates of one of the vertices of
the quadrilateral, we have

la” + mB” + ny"’ = 0,
and the envelope of (2), subject to this condition, is
o sin Ap1 + B' Siang + 'y/ sin O’p;, =0. (3)

If we suppose one of the points to go off to infinity, we
see that if a conic pass through three fixed points, and have
an asymptote parallel to a given line, the envelope of its
director circle will be a circular cubic.

287. A conic is described through the intersections of the
diagonals and opposite sides of the quadrilateral referred to in
the preceding example, so as to have a focus on the bicircu-
lar quartic; to show that its corresponding directrix will pass
through a vertex of the quadrilateral.

From (3), in the preceding example, the focus of the
conic satisfies the relation

d sin Ap, + 3’ sinBp, + yp;sinC = 0;

but p,, ps, ps are evidently proportional to the perpendiculars
1y P2 ps o the corresponding directrix ; hence we have

a sin Ap, + (3'sin Bp; + ¢"sinCp; =0

but this is evidently the condition that a line should pass
through the point o', 3', .

288. Ten pairs of circles are described through six points
on a conic; to show that the middle points of the centres of

these pairs lie on a line.
M
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Let the equation of the conic be

xZ

LY
a2

b

2

1=0,

and let ¢, ¢,, &c., be the eccentric angles of the six points;
then, if 2y, 71, 2., ., are the co-ordinates of the centres of the
circles passing through the points ¢, ¢s, ¢s, and ¢y, ¢s, e, Te-
spectively, we have, from (11), Ex. 1.,

2

2= i—a {cos $1+ COB o + COS g + COS (1 + o + ¢ba)

9

2

Yi=— éi—b {sinq)l + 8in ¢, + 810 ¢y — SIN (1 + o + ¢hs)

@, = :—; {cosqu +COS ¢ -+ COS P + €OS (¢py + ¢5+¢6)},

2

Yo =— Z—b:sinqbﬁsin% + 810 g — SIN (g + @5+ Ps)

)

hence, if #, y are the co-ordinates of the middle point of
@ Y1, @ Y2, WO have
c‘Z

8a

xr =

(L + 2 cosscos ), (1)

y=- 807) (Q — 2 sins cosf),! ?)

where P=Scos¢, Q=3Zsin¢, 2s=39¢,
and ¢1+¢2+¢3—¢4—¢5—¢6=20~

Eliminating, then, 0 between (1) and (2), we obtain the
equation
azsing — bycoss — ¢ (Psins + Qeoss) = 0.  (3)
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But this evidently represents a line which is the same for
every one of the ten pairs of circles.

289. Ten pairs of triangles are formed by six points on a
conic; show that the middle points of the intersections of the
perpendiculars, or centres of the nine-point circles, of the
pairs of triangles lie on a line.

290. Four triangles are formed by four points on the

conic
xz

yQ
—a—z + ? - 1 = 0 5
show that the centres of the circles circumscribing these
triangles lie on the conic

(4ax — ¢ P)* + (4by + ¢ Q)* = 4c* sin’s,
where P=Zcosp, Q=ZTsing, 2= 3¢,

¢, &c., being the eccentric angles of the points on the curve.
291. To find the equation of the equilateral hyperbola
passing through four points on the conic

2 2

rz Y
&'2 + ’55 - = 0.
If ¢ is the eccentric angle of any point 2, ¥ on the curve,
we have
Ca(t*+ 1) b -1)
ST 0 YT/
putting ¢#-' = ¢.  Substituting these values, then, in the
equation of the equilateral hyperbola

& — y* + 2hay + 29z + fy + ¢ =0,
we get

(@4 b= 2hab o/~ 1}t + 4 {ga— fb /=1 £+ 2 (2 + b~ o) £
+4{ga+ fb /= 1}t+a*+6+2hab /=1 =0.

M 2
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From the absolute term of this equation we obtain

2hab = (@ + b*) tans,

where 2 =S¢ ;
and from the coefficients of # and ¢ we find
2 /2
d4ga = - (@ + ) (P coss+ Qsins),
co8 §
2 2
4fb = - (a—-—+b—) (Psins — Q coss),
coS §
where P=Zcosp, Q= Zsing.
Also, from the coefficient of ¢, we have
2 2
2 =- (a* -0+ (a +b)R,
cos 8
where R=35c083 (¢ + ¢o — ps — ¢4) 5

hence, finally, the equation of the equilateral hyperbola is
Qab coss (#*—y*) + 2 (a* + 0*) sins wy — b (a*+b*) (Pcoss + Qsins) z
—a(a®+ b)) (P sins — Q coss)y —ab{a® — b*) cos s
+ab (&*+6*) BR=0.
292. Four tangents to the conic

a,/.z yZ
Ez‘}‘—b—ta—l:o

are drawn at the points whose eccentric angles are ¢,, &e.;
show that the tangential equation of the parabola which
touches these tangents is

@ (R + cos §)\* + b*(R — coss) u* + 2ab sin s Au

+a (P coss+ @sin s) vA + b(P sins — Q coss) uv = 0,
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where P, Q, R, s have the same meaning as in the preceding
example.

293. A quadrilateral is formed by four tangents to the
conic

._L,Z yz

E,; + Zé - 1 = 0 M
show that the equation of the line passing through the
middle points of the diagonals is

g(Psins— Q coss) - g (Pcoss + Qsins) = 0,

where P, Q, R, s have the same meaning as in Ex. 291.

294. Given five points, to show that there exists an equi-
lateral hyperbola, such that the centre of the circle passing
through any three of the points is the pole, with regard to
the hyperbola, of the line bisecting at right angles the line
joining the remaining two points.

Let

pi = (@ =)+ (v - i),
then the equation
3y lipit = 0 (1)

will represent an equilateral hyperbola, provided we have
2l, = 0, 2[2 €T; = 0, Elgyi = O, Eli (x{" + yzz) =0 4 (2)

for these are the relations which we obtain if we express that
the coefficients of

(2 + A e@+ ), ¥ @+,
and the sum of the coefficients of #* and #* in (1) vanish.

Now, when the relations (2) are satisfied, we have also

S lipi =0, (3)
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and then it is easy to see that (1) can be written in the form

S, b af = 0, (4)
Where ay = Plz - p52, ag = P22 - p52, &0- H
and, from (3), S = 0. (5)

But when the curve is written in the form (4), we see from (5)
that the pole of the line a; = 0 is found from the equations

a; = ag = asz. (6)

Now the line a; = 0 bisects at right angles the line joining
the points @, ys, @s%s; and the equations (6) represent the
centre of the circle passing through the points @y, 229,
@5 9s; therefore, &e.

If the given points are taken on the conie

2 2

2y

4+ - -
G/

1=0,

the asymptotes of the hyperbola are parallel to the axes, and
the co-ordinates of its centre are given by the equations
(@ - b7 v —-a*

@ = (P + cos2s), y= w

(@ - sin 2s),

where P=3Xcosg, Q=2sing, 28=3¢.

295. Find the equations of the parabola and equilateral
hyperbola having closest contact with a conic at a given
point (see Ex. 291, and Ex. 292).

Also show that the locus of the centre of the hyperbola is
the inverse of the curve with regard to its director circle.

296. A conic passes through four fixed points on a circle ;
to find the locus of its vertices.
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Let Ved+y-k=0
be the equation of the circle, and
U=az®+ by + 292+ 2fy=0

that of one of the conics passing through the points; then

U+AT7 =0 (1)

represents any conio of the system. Now the equations
ar + g + Az =0, ()
by + f+ Ay =0, (3)

represent respectively the axes of (1) ; hence, eliminating A
between (1) and (2) and (1) and (3), we get

(@a-b)ay* + g(y* —a*) - 2wy - K (ax +g) =0,  (4)
(a=b)aty +f(y* - o) + 2gzy + K (by + f)= 0. (5)

These two cubics evidently pass through the four points,
and also through the intersections of the diagonals and oppo-
site sides of the quadrilateral formed by these points; for it
is easy to see that the equations (4) and (5) are satisfied, if
we have

ar+g by+f_ (9z+1y)
z Y K

but these are the equations which determine the common self-
conjugate triangle of U and V'; therefore, &e.

It may be observed that the cubies (4) and (5) cut each
other orthogonally at their seven finite points of intersection
which we have found above.

297. Two conics U and V are inseribed in the same quad-
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rilateral so that a focus of U coincides with the centre of 77;
to show that the points of contact of 7 with the sides lie on
a circle.

Let f2+71_1:0

be the equation of 7, then
v(a?,)\ + g/’,u + v) = 620\2 + ,uz) =0

is the tangential equation of U; for this represents a conic,
of which the origin and the point #/, y" are foci. Now if we
express that the tangent of V represented by

geose+%sin0—l=0 (1)

touches U, we obtain

_ai, ____y_, o _!_31 2 a1 ? 2 2 _
1 o cos 0 7 sin 0 v (a*sin® 0 + 0% cos*0) = 0. (2)

But this equation (2) shows that the point of contact
acos @, bsin O of (1) lies on

which represents a circle passing through the points where
the polar of the second focus of U meets the director circle
of V.

298. If the two conics described through a point P to
touch four fixed lines cut orthogonally at P, to show that P
lies on the circular cubic which is the locus of the foci of the
conics touching the lines.
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If from any point P tangents are drawn to the system of
conics inscribed in a quadrilateral, they will belong to a sys-
tem in involution of which' the tangents to the conics of the
system which pass through P are double lines (Conics, Art.
344) ; but since, in the case we are considering, the latter pair
of lines are at right angles to one another, it follows that the
tangents from P to one conic of the system must pass through
the circular points at infinity, or, in other words, P must be a
focus of that conic; therefore, &e.

In a similar manner we can show that the two parabolae
described through any point P of the circumscribing circle
to touch the sides of a triangle cut each other orthogonally
at P.

299. Two conics are described through a point P to touch
the lines 4, B, C, D, and two more to touch the lines
4, B, C, E. If the tangents to these four conics at P have
a constant anharmonic ratio, show that the locus of P is a
conie touching D and E.

Also show that, if the ratio becomes a harmonic one, the
locus will reduce to a right line.

300. A tangent to the conic

S =azt+ by* + 292 + 2fy +¢=0
is at right angles to a tangent to the conic
S'=b*+ay*-1=0,
the axes being rectangular; to find the locus of their inter-
section.
If 0 is the angle which a tangent from 2y to § makes with

the axis of #, we obtain from the equation of the pair of tan-
gents through ay (Conics, Art. 92),

S{a cos*@ + bsin®0) = {(ax -+ g) cos O+ (by +7) sin B}*; (1)
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and similarly for S’ we have
S’ (b cos®@ + asin®@') = (bzcos @' + ay sin 6)*;  (2)
but & - 6 = L7 ; hence (2) becomes
8’ (@ cos*@ + b sin* ) = (bx sin @ —ay cos 0.  (3)
‘We have then from (1) and (3), putting %: I

pay + axr + g
pbx — by ~ f
Substituting this value of 0 in (3), we get

tan 0 =

8 {alyube = by —F)? + b(uay + az-+ )} = (ab(a*+ )+ bgw +afy);
or, restoring the value of p,
abS(1 + 8") + 8'(abS + af* + bg* — abe) +
Qab /88" ((a - b)wy + gy — f} = (ab(c* + y?) + bga + afy). (4)
Now we can show that we have identically
(ab(2 + ) + bge + afy)*= (1 + 87) (abS + af* + by* — abe)

= ab{{a=bjay+gy —fe)?;
hence (4) becomes

((a=b)ay +gy~Jfe}*+2./88" ((a-b)ay + gy - fr) + 8

af* + bg* — abe
ab

‘We have therefore, finally,

"2 2

(= B)ay + gy —Jo + J(% + %-c>§2= 88, (5)

which represents a pair of curves of the fourth order, each
having quartic contact with the given conics.
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Tt may be shown that the curves (5) are bicircular quartics
with nodes.

301. In the same way as in the preceding example, we
can show that if a tangent to the parabola ¢* + azx + ¢ =0 is
at right angles to a tangent to the parabola «* + by + ¢ = 0,
then their intersection will lie on

(Rabzy — ab’e — &by — cb* — ¢'a®)* — 4a** 88’ =0,

which represents a nodal circular cubic having triple contact
with the two parabols.
302. A tangent to the circle

S=y*+@—-cf-r=0
is inclined at a constant angle 0 to a tangent to the circle
S'=y+(@+c)-1"=0;
show that their intersection lies on one or other of the curves
{cos O (2* + 9* — &) + 2cy sin O + 7' }2 = S8 = 0.

Show also that these curves are limagons of Pascal.
303. If the tangents drawn to the conic

xZ yZ

? + *Z;Z -1=0
from @y form a harmonic pencil with the perpendiculars to
the tangents to the conic

m? y?

gfz + ?)/—2 -1= O,

from the same point, show that the locus of 2y is the bicircu-
lar quartic

(@4 1) = (@ +d?) &' = (B + V) P+ @t + B 0*= 0.
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304. If the tangents from a point P to the ellipse

<

AR AR | 1)

@b
centain an angle a ; to show that the tangents from P to the
hyperbola

@y 4a’ + (@ - 1) sin® a @)
@ (a* — ') sin® a
contain an angle (3, where
@ - b .
cos 3 = <m2> oS a. (3)

This is evidently the case if the loci of intersections of
tangents to the conics at the constant angles a and (3, respec-
tively, coincide. These loci are for the conics
2 2

v ¥

.’/UZ

P ‘%Z -1=0,

(Conics, Art. 169, Ex. 3),
(@ + y* — & - ) = doot? a (B*a + @y - @*b%) = 0,
@+ =~ a* = ¥ = doot’ B (10 + @y ~ @57 = 0.

But, expressing that these two curves coincide, we obtain the
conics (1) and (2) given above, and the relation (3) between

the angles.
305. A tangent to the conic
xz ,1/2
@ttt

is inclined at a constant angle 0 to a tangent of the confocal

conic
x 9
= +L..1=O;

a* b
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show that the locus of their intersection is the bicircular
quartic

tan® 0 («* + 4 - @ = 1)’ = 2 (B* + b%) 2* -2 (@ + @) §°
+2(a*b? + d?0?) + (a* — a”*)? cot? 0= 0.

306. 4, B, A, B’ are the points of contact of the tan-
gents drawn from a point P to two conics having the same
centre and axes; if the circles passing through P, 4, B, and
P, A', B, respectively, touch one another, show that the
locus of P is a bicircular quartic.

807. The pairs of tangents drawn from a point P to two
concentric equilateral hyperbolee contain equal angles; show
that the locus of P is an equilateral hyperbola concentric
with the given ones, and passing through their intersec-
tion.

308. Let #, y, be the co-ordinates of the vertex C of a
triangle self-conjugate with regard to the conic

2T 10,
P T 1=0;
then if the angle at (' is right, show that the co-ordinates
#, 3 of the middle points of the base are given by the

equations
/ az 2 2 2 2 / bz 2 2 2
szc—’%(ac +yt+ ), y—-;;g—/(a, +yt =)

309. A point P moves along a right line ; show that the
locus of the foot of the perpendicular from P on its polar,
with regard to a conic, is a circular cubic passing through
the foci of the conie.

310. 8, H are the given foci of a conic U, and S, H  of
a conic V'; if U and ¥ vary so as to be always similar to
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each other, show that their common tangents envelop a conic
which touches the lines SS’, SH’, S’ H, HH’.

311. The perpendicular to a chord of a conic at its
middle point passes through a fixed point O on one of the
axes of the curve; show that the chord touches a parabola, of
which O is the focus.

812. From any point of the circle

Pyt -at-0"=0,
pairs of tangents are drawn to the confocal conics
2

z Y & Y
te =% GtE

2

-1=0;

show that the difference of the squares of the reciprocals of
their lengths is the same for each pair.
313. If from any point of the quartic curve
2

, % '1/2 ) x? y?
2(x2+y)<1—— +?>—(a2—b)(&;—ﬁ>=0

uz -
tangents are drawn to the hyperbola
$2 yZ
#5170
show that the sum of the squares of their lengths is equal to
a - b
314. If the foot of the perpendicular from a point P on
its polar, with regard to the conic

LY

7 + iz 1=0,

moves along the right line Az + uy + v = 0, show that the
locus of P is the cubic

A 2 2
Ao + paty + (@ — 0%) ay (sz - %‘75/> + va2 b* <§ + %) =0.
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315. Two tangents to a conic, whose foci are given, pass
through fixed points on the axis minor ; show that the locus
of-their intersection is a circle passing through the foci. If
the tangents, instead of passing through fixed points, are
parallel to fixed lines, show that the locus is an equilateral
hyperbola passing through the foci.

316. Given two parabole with their axes parallel, show
that a right line which cuts off from them areas, which are in
a constant ratio to each other, envelops a parabola which
touches the common tangents of the given ones.

317. A variable tangent to a conic S, whose point of con-
tact is P, meets a concentric, similar, and similarly situated
conicin 4, B ; show that the lines joining 4, B to the points
where the normal to S at P meets the axes of S are inclined
to 4, B at constant angles.

318. A conic passes through four fixed points; to find
the envelope of the right line which passes through the
middle points of the diagonals of the quadrilateral formed
by drawing the tangents at these points.

If we consider two consecutive curves of the system, we
see that the different loci of the centre, obtained according as
the tangents or points are fixed, must touch each other.
Hence, the line referred to above, which is the locus when
the tangents are fixed, must touch the locus of the centre of
the system. The envelope is, therefore, the conic bisecting
all the lines joining the points.

819. To show, in the preceding example, that the line
containing the intersections of the perpendiculars of the four
triangles formed by the tangents passes through a fixed
point.

This line is the radical axis of the director circles of
conics touching four lines (Conics, Art. 298, Ex. 1), and
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is, therefore, the chord of contact of the director circle of the
system of conics. But the chord of contact of the director
circle, given four points on a conie, passes through a fixed
point, viz., the centre of the circle circumscribing the fixed
self-conjugate triangle (see Ex. 286).

320. Conics of a given system are described to have
double contact with two fixed conics; show that (1) the line
passing through the middle points of the diagonals of the
quadrilateral formed by the tangents at the points of contact
touches a fixed conic; (2)the line of the intersections of the
perpendiculars of the four triangles formed by the same tan-
gents passes through a fixed point.

321. Show that there are a real pair of lines passing
through the points of intersection of the point circle

pr=(e=-2)+{y-y)=0,

and the conic Ssz—+y—2—1=0,
whose equations are
v , y 1 .
=4/ =) - o+ 0/ (W - ) =0,
M=y - a0 = )=,

where u, v are the elliptic co-ordinates of &/, " (see Ex. 1).
Show also that we have the identity

o = (a* = v*) 8+ LIL.

geos.;(ﬁ ﬁ)+%sin§(a+[3)—cosé (@-P)=0
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is the equation of a chord of the conic
mZ g/2

? + 32 -1=0 5
show that the elliptic co-ordinates of the antipoints (Salmon’s
Higher Plane Curves, Arxt. 139) of its extremities are given
by the equations
u=acost(a—-B)th/~1sind(a~p), v=cocostla+p).

823. Given five lines touching the parallel curve to a
conic; to find the locus of the centre of the curve.
Using the notation of Conics, Art. 228, Ex. 8, we have

(a — 7)* = a*cos® (0 — a) + 0 sin® (0 - a),

and similar equations for (3, &ec., where » is the constant
distance of the parallel curve. Ilence, eliminating linearly »

a* cos* 0 + b*sin® 0 —1*, (a* — &%) sin O cosB, @*sin®0+ 0* cos* 0 — »*

from five such equations, we obtain a determinant which wmay

be written
a, 3, Yy 3, €
llz, /52, 72, 82, Ez
008 2a, cos2B, cosy, cos28, cose = 0.

sin 2, sin 2@, siny, sin2d, sin e

1, 1, L, 1, 1
If we substitute for «, 3, &ec.,
zcosa+ysina—p, wcosf+ ysin - p., &e,

we can show that terms of higher degree than the second
N
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vanish in this determinant. The locus is, therefore, a conic.
Since » may have a double sign, we can change the signs of
a, 3, &c., in the determinant. We thus see that there are
sixteen such conics altogether.

324. A conic passes through four fixed points; show that
the locus of the pole of a fixed triangle with regard to the
conic (Conics, Art. 875) is a unicursal quartic, of which the
vertices of the triangle are nodes.

325. A conic touches four fixed lines; show that the locus
of the pole of a fixed triangle, with respect to the conic, is a
conic eircumscribing the fixed triangle.

326. Given four tangents to the curve parallel to a para-
bola; show that the locus of the focus of the parabola con-
sists of eight nodal circular cubics. Show also that each of
these cubics passes through the centre of one of the circles
touching the sides of a triangle formed by any three of the
tangents.

327. Given four lines parallel to the tangents to a conic
at the constant distance J( (f?—; 4
axes of the curve ; show that the locus of the centre consists
of eight circular cubics.

328. ABCD is a fixed parallelogram circumseribed about
a conic; if any tangent to the curve meet 4B, CD in the points
P, Q, respectively, show that the area of the triangle PAQ
is constant.

329. P, P’ are the points of contact of a common tangent
of two conics; if C is the centre of one of the conies, and A4
the area of the triangle CPP’, show that, taking the four
common tangents,

>, where «, b are the semi-
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330. Show that the polar equation of the evolute of a
parabola referred to the focus may be written in the form

1

(%= (cos 0y (sin 0.

If the evolute cut a parabola having the same focus and
axis at an angle ¢, show that

cot® ¢ = cot 1 0.

331. A tangent to a hyperbola U meets the asymptotes
in A, B; if a circle S is described through 4, B, so that 4B
subtends a constant angle at the circumference, show that
the locus of the centre of S is a conic having the same centre
and axes as U.

Also show that S cuts a fixed circle orthogonally.

332. If we substitute a concentric, similar, and similarly
situated conic for the asymptotes in the preceding example,
show that the locus of the centre of S is a concentric conic.
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XV.—SPHERO-CONICS.

333. If we take the principal axes of the cone of the
second order containing a sphero-conic as axes of co-
ordinates, we may consider the curve as defined by the
equations

ax® + by + ¢2® = 0, (1)

rF+yr+s-1=0, ?)
the radius of the sphere being taken equal to unity.

Let a, 3 be the halves of the principal angles of the
curve, then (1) becomes

#* cot?a + y* cot* 3 - &* = 0 (3)

if the axis of & contains the internal centre of the curve.
‘We have also, from (2) and (3),

x2

Vo _1-0. 4)

Sin'a | s
‘When the curve is written in the forms (3) and (4), the
real foci are given by

z=tsiny, y=0, 3=cosy,
cosa
cosf3’

and the equation of the real cyclic arcs is

where cosy =

y* (sin* a — sin’*3) — #*sin*@3 = 0.



SPHERO-CONICS. 181

‘We may conveniently express the co-ordinates of any
point on the curve in terms of a single parameter, as fol-
lows :—

w_sinacosﬂ y_tanﬁcos:; sinf Lo 00sa (5)
NGB a@) 7’ A0
where A() = /(1 ~ sin®y sin*0) ;

or thus: = = sin acos ¢, y = sinf3sin ¢, = = cos3A(¢), (6)
where A(p) =4/(1 - sin®y cos’ ¢).

334. To find the equation of the circle passing through
three points on the curve.

Let
U= ar® + by’ ex* =0

be the cone containing the curve, and
V=(lz+my+nz)— (@ +y*+2)=0

that containing the circle; then if we form the discriminant
of U - kV, we obtain

* mk n?

a+k+b+k+c+k_

1
2= 0. (1)

But writing U~ %V in the form
(@ +k)a? + (b+E)y* + (¢ + k)s* — k (le + my + nz)’,

we see that when it breaks up into two great circles, they
must be tangents to the conic

(a+k)a* + (b +k)yy*+ (c+k)z°=0. 2)
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Now, if we use the angle 0 at (5), Ex. 333, the equation of
the chord joining the points 6, 6, can be written

@/ acost (0,+0)+y/bsink (6, +0,)
=2 «/: OOS% (01 b 02),
and if this chord touch the conic (2), we have

acos® L (0h+0,) bsin®}(0,+0,) ccos’}(0:—0,)

a+k b+k c+k

But comparing this equation with
(coso — A) cos®3(0; + 0:) + (1 + cosa)sinz (6, + 6,)
=(1-4)cos*3 (0, - 0), (3)
where A=,./(1-Nsin’0),

coso—A a(c+k) 1+cose b(k+ec)

we geb 1-a c(@+k’ 1-a  c(k+b)
1-A" |, c(a-d)

whence T oo s =A*= F@=oy (4)
1-cose [a—-c\/k+0 )

and 1+A _<a~ b><lc+c> |

A+cose [c-b\(k+a
1+a \e-0 k+c)
Now, from (3), we have

F(0)+ F(0,) =F (o),
and, from (5), F(o)=2F (¢),

if cos’ ¢ = (5:—9 <§—j—i>, (6)
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in which case we have also

sy (a—\[k+D v s, (B=0)k
51n¢~<“_b><k—+c>,1—)\sm¢—b<k+c). (7

But from the absolute term of the equation (1) in %, we have

abe

Prm®+nt-1=—;
bk ks’

8)
and from the absolute term of the equation in & + a we get

a(a — b)(a — ¢)i?

P +mt+nt -1

= (ki + @) (ko + @) (ks + @), (9)

and similar values for m?* #*; hence we may write the equa-
tion of the plane of the circle thus:

(@ + k) (o + k) (a + k) [Ty by By
ety e Uie) o

Putting, now, @ =cot*a, b =cot*f3, ¢ =~ 1,

(0 b,

we have F(Ol) = JO —(gl_:is_inT,yiémT) = Uy, Say;

and then we get

k+a [, sin*f3
e (1 " e en® 3 (1 + ),

k+b  (sin’a-sin’@) .
B ) L N (TN
kE+c sin®(3 5 (m )

- - = cos'f3 dn* (1 + ).

v
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Thus (10) becomes

i (sin*a — sin®f3) (sin*(3 — sin®a)

€105 0y + : 818285 + 2
bty sinf3cos3

sila cOSa

2
_¥B  d, (11
CcOoSa

where ¢, = cend (u, + uy), &e., s =snd(u, + us), &o.,

and dy = dn (1, + us), &e.
We have also

~ cos’ 3 dn’F (v + uy)

by = = sin*a sn° 1 (4s + u5) + 81I0* (3 e % (2 + us)

» (12)

and similar values for A, k. Now if R is the spherical
radius of the civele, we find, from (8),

abe

2 — .
tan*R = s

hence, from (12), we have an expression for R in terms of
Uny Usy U,

335. From (2) in the preceding example we see that
when %, and therefore u, + u,, is given, the chord touches
a concyclic conic. In this case the point of contact is at the
external point of bisection of the chord. If w, — u,is given,
the chord touches a concyclic conie, and the point of contact
is then the internal point of bisection (see Salmon’s Suzfaces,
Art. 247).

Hence we see that if two sides of an inscribed triangle
touch two fixed concyclic conics externally, then the third
side will touch u fixed concyeclic conic internally; and from
(11), in the preceding example, the centre of the circum-
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seribing circle will lie on a fixed sphero-conic, having the
same centres as the given one.

If we seek the locus of the centre of the circle which lies
in its plane, we obtain an equation of the form

@ + 7 + 22 = (a2 + By* + 7)) = 0.
This equation, which represents the pedal surface of a qua-
drio, being combined with the cone of the second order found
above, gives the required locus.

336. To find the locus of the intersection of the perpen-
diculars of triangles inscribed in one sphero-conie, and cir-
cumscribed about another.

The equation (1), Ex. 834, gives the discriminant of
U - &V, where U is a sphero-conioc and V" a circle.

Putting

l=o'secp, m=y'secp, n=2gsecp

in this equation, where @, ¢/, &’ are the co-ordinates of the
centre of ¥ and p is its radius, it becomes

sin?p + B {(b+c) @+ (c+ @) y*+(a + b) " — (a+ b +c) cos’p)
+ Ek{bea™ + cay”® + abs’® — (ab + be + ca) cos* p)

—abcecos®p = 0. (1)

Now, if ¥ is the polar circle of a triangle inscribed in U, the
coefficient of %* vanishes; and if 7 is the polar circle of a
triangle circumseribed about U, the coefficient of % vanishes.
Hence, if U and U’ are the given conics, by equating the
values of p we obtain the equation of the locus

a?+ by vest d(V+ ) X2+ V(d+ )Y+ (d 1 V) Z°

- 3

a+b+e b+ Ve +dd

where z, y, = are the axes of U, and X, ¥, Z those of U".
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337. To find the locus of the centre of the circumscribing
circle of a triangle inscribed in one sphero-conic and circum-
seribed about another.

Using the notation of the preceding example, if U is the
conic about which the triangle is circumscribed, we must

have
02 -4A’0 =0, (1)

where we write (1), Ex. 336, in the form
AR + OF + Ok + A
Now, exactly as in the case of plane conics (see Ex. 35), we
can show that the triangle is self-conjugate with regard to a
fixed conic U’; thus we have
¢ X2+ dd Y2+ dV 73

= cos? 2
abt+be+cd P (2)

where X+ VY + 2% =0

is the equation of U’. Hence, eliminating p between (1) and
(2), we get

(W-W"=dabe W {(a +b+c)W'—(b+c)a*~(c+a)y

- (a + b) 22}’
bex® + cay® + abz?
where W = ——-i/——~—,

be + ca + ab
W 0. CENAS SR 1/ A
' +cd +dt

338. To find the locus of the centres of equilateral tri-
angles inscribed in a sphero-conic.

Let P be the radius of the imaginary polar circle of the
triangle, then we have, as in plano,

U= aa* + by* + ¢z* = (¢ + b + ¢) sin®P. (1)
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But if  is the radius of the inscribed circle, we have, from
the invariant relation connecting the curve with the inscribed
circle of an inscribed triangle,

(U-(a+b+c)sin®r)® =4 sin’r{ W — (ab+ bc + ca) cos* ), (2)
where W= bex®* + cay® + abzz.

‘We now want to find the relation connecting P and » for
an equilateral triangle. The relation for any triangle is

sec® P sec®r sin®* D = tan® P + 2tan®r

(see Salmon’s Surfaces, Art. 257).
triangle D = 0 ; therefore

But for an equilateral

tan®» = — L tan’P ;
hence, from (1) and (2), we get
QU (U -pQ)—4QUW - 8Q(U - pQ)(W - ¢Q) =0,
where p=a+b+ec, q=ab+bc+ ca,
Q=a+y +2.

339. To find the equation of the circle inseribed in a tri-
angle circumscribed about a sphero-conic.

We can arrive at the equation of the circle by a method
similar to that we employed in Ex. 44.

Let
z° y*? 2’ ‘
—74+—2_‘/-2_ 2 2=0
N
sy " (1)
il g

be the equations of two intersecting confocal cones of the
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second order; then, if &, ¢/, & are the co-ordinates of the
centre of the circle, we find

;o mmy = V4 {(52 - vﬁ)(bz - v{)(bz—— vy )} I

¥ = masm vy, 7 sinycosy,/(sin*a - sin’y) @)
1
= ——— {(=vP)(F - v?) (¢ —vd)], J

~ cosa cosy

where siny = b and 2, 2 U

¢ ¢’ e’ e
are the sines of half the greatest axes of the confocal sphero-
conics which pass through the vertices of the triangle. For
the inseribed circle all these confocal sphero-conies intersect
the given curve in real points; and for an exseribed circle,
one of the confocals intersects the curve in real points.

If » is the radius of the inscribed circle, we find

N ey )
VAR

where « is the value of u for the given curve. Again, if s is
the semiperimeter, we find

V' — @) (e’ — @) (us* — o*) )
a/ (@ - =-F))
If we substitute p., ps for we, vy in (2), (3), and (4), we
obtain the corresponding formule for one of the circles
exscribed to the triangle.

tan » =

sin § =

(4)

340. Triangles are inscribed in one sphero-conic, and
circumseribed about another; show that the centres of the
circles touching the sides lie on the intersection of the sphere
with a cone of the fourth order (see Iix. 837).

341. To find the locus of the centres of equilateral tri-
angles circumscribed about a sphero-conic.
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Let P and R be the radii of the polar and circumseribing
circles of the triangle, respectively ; then, from the invariant
relation connecting the curve with the circumscribing circle
of a circumscribing triangle, we have

(W - q cos® R)2 =4abccos* R (U -psin*R); (1)

and from the relation connecting the curve with the polar
circle of the same triangle, we have

W = q cos’ P, ()
where U and W have the same meaning as at Ex. 338. But
tan* P = — L tan* R

for an equilateral triangle ; hence, from (1) and (), we get
OW (W - qQ) — 4abc QUW - 8abeQ (U - pQ)(W — qQ) = 0.

342. To find the locus of the centres of equilateral tri-
angles self conjugate with regard to a sphero-conic.

‘With the notation of Xx. 338, we have, from the inva-
riants of the curve and a circle,

W=gqcos?R, U= Psgin’r;

but tan B =2tanr for an equilateral triangle; hence we
get
SUW +Q (pW + qU) - pgQ* = 0.

343. A triangle is self-conjugate with regard to a sphero-
conic ; show that the feet of the perpendiculars form a tri-
angle circumscribed about a confocal sphero-conie.

344. A circle S touches the sides of a triangle self-conju-
gate with regard to a sphero-conic U; show that the oentre
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of 8lies on the equilateral sphero-conic having double con-
tact with U at a pair of points which lie on a tangent to S.

An equilateral sphero-conic is such that the intersection
of the perpendiculars of an inscribed triangle, and the centres
of the circles touching the sides of a self-conjugate triangle,
lie on the curve; that is, when the curve referred to its axes
is written in the form

az® + by* + cz* = 0,

we have a+b+c¢c=0.

345. To find the equation of the polar circle of a triangle
formed by two tangents and their chord of contact.

Let «y'2 be the co-ordinates of the vertex, and a2,
2,9,%, those of the points of contact of the sides, then if
A, u, v are the tangential co-ordinates of a tangent of the
curve, we must have an equation of the form

A2y + pys + va) Ny + pye + v20) - b (AN + uy’ + v¥)?
= 0 (beA® + cap® + abr®) 5 (1)
but since the sum of the coefficients of #* y? and 2* must be
the same on both sides of this equation, we get
cosl — k& = 0 (be + ca + ab), (2)

where 0 is the length of the base.
Now A, u, v are the co-ordinates of a point on the reci-
procal curve
S (= bed® + cay® + abs?)
hence, from (1) and (2), we get the identity

PQ - cos 0Q = k{Q° — (xa’ + yy + 22)*)
(cosf - k)

. 2 2 2
ab+bc+m{a(b+c)x +b(c+a)y*+c(a+d)s?), (3)
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where Q=2+ + 22
Now PQ - cosQ 4)

is the sphero-conic which is the locus of the vertices of right-
angled triangles described on the base. It is not difficult,
then, to see from (3) that the polar of the vertex with regard
to this conic coincides with the polar of the same point with
regard to the conie
alb+c)at+b(c+a)y*+cla+0)ef=0. ()

Again, it is easy to see that the vertex and the intersection
of the perpendiculars are conjugate with regard to the locus
(4), and, therefore, also with regard to (5); hence the inter-
section of the perpendiculars lies on the great circle

alb+c)wr’ +b(c+a)yy +c(a+d)2'=0; (6)
and since it also lies on the perpendicular from the vertex on
its polar with regard to the curve, we have

b-c)yde+(c—a) sy +(a-0)dyz=0. (7)
‘We thus determine the co-ordinates of the centre of the
circle, and the remaining condition may then be obtained by
expressing that the vertex and base are pole and polar with
regard to the circle. We have, then, finally, if the equation

of the circle is
Az + py +va) = p* (& + y* + &%) =0,

A=2{b(c+a)(a-20)y”~c(a+0b)(c—a)?], (8)
p=y{c(@+b)(b=rc)s*—a(b+c)(a-0b)a*}, (9)
v=={a(b+c)(c—a)a?=b(c+a)d-c) y?, (10)

p={a(d+e)a?+ b (c+a)y*+c(a+b)2?
){a(b- )’y + b (c—a)* s + ¢ (a - b) "y}, (11)
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346. If in the preceding example the vertex of the tri-
angle lies on one of the axes of the curve, show that the
circle has double contact with a fixed concentric sphero-
conic.

347. If the centre of the circle in Ex. 345 lies on the
curve, show that the vertex of the triangle lies on a cone
of the fourth order.

348. Suppose, in Ex. 345, that the vertex of the triangle
lies on one of the great circles

a(b+c)(e-a)d®=bc+a)b-e) y® =0, 1)
then the equation of the corresponding circle reduces to
(/¢ —a) =y (b= 0) = el (- @)+ (0= B) "} (a* + 4+ ) = 0,

and is, therefore, from (1), altogether fixed.
‘Writing one of these circles in the form

2/ 0@ —a)ty JSatr-¢) =¢ ./ {(b-a)e*+y* +5%)),

we can easily see that it has double contact with the curve.
We also see, as at Iix. 82, that the curve is its own reciprocal
with regard to one of these circles.

There are besides two other pairs of such circles corre-
sponding to triangles having their vertices on the two other
axes of the curve.

349. To find the locus of the vertex of a triangle formed
by two tangents to a sphero-conic and their chord of contact,
if the centre of the inscribed circle lies on the curve. In the
same way as at Ex. 85, we can show that if the curve is
referred to the triangle, it must be written in the form

a3 —y* = 0.
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Putting, then,
zcosa + y cosf3 + 3 cosy, @ cosa’ + ycosfd + % cosy’,

2 cos A + ¢ COS u + 2 COSV
for a, (3, v, respectively, in (1), it must become identical with
U=ar +by* +c2* =0

hence if a3 - y* = kU, we have
cosa cosa’” — cos’A = ka, &e., 1)
cosa cos (3" + cosa’ cos 3 = 2 cos A cosu, &e.; (2)
therefore (cosa cos (3’ — cosa’ cos3)* = — 4% abd
— 4k(acos’u + b cos’A).  (3)
But cosa cosf3 — cosa’ cos3 = zsinb,

and, from (1), A(a+b+¢)=—(1 - cosl);

ar

= = &o.
also cos A @ TP cosu = &e.,

where 0 is the length of the base of the triangle.
Hence (3) becomes, after dividing by 1 ~ cos0,
P2t (1 + cosl) +4ab (1 — cos ) (2% + 4* + &%)
_ 4pab (az’ + by?)
@+ 0y Y

(4)
and, by symmetry,
Py (1 + cost) + 4ac (1 — cos0)(«* + y* + &°)
_dpeelar 4 ) g
a2$2+ bzy.+ g
where p=a+b+ec
0
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Eliminating, then, cos 6 between (4) and (5), we get, after
dividing by by* — c2?,

U =2p(@a* + By* + &)~ dabe (@ + o + %)= 0,

ax? by? cs®

or + + =
b+e—a a+c—b a+b-c

0,

which represents a sphero-conic confocal with U.

350. There are three systems of circles which have double
contact with a sphero-conie, the chords of contact of each
system passing through one of the centres of the curve.

The sphero-conic being written in the form

Py +2-1=0, a®+0y*+ ¢z*= 0,
the equation (e - a)wr’ + (¢ — D)yy' = ¢ =0 (1)

evidently represents a circle having double contact with the
curve at points lying on the great circle wy’ - ya/ = 0. If we
suppose zy to be the internal centre of the curve, the circles
of the system (1) touch two opposite branches.

The equations

(b—a)ar + (b-c)ee’ - b =0, 2)
@-dyy+@-c)ed-a=0 (3)

represent circles of the other two systems having double
contact with the curve at points lying on the great circles

o — 2 =0, y'—=zy =0,

respectively. These circles touch the curve at points on the
same branch.
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If R is the radius of the circle (1), and ¢ the distance of
its centre from the point s, we find

¢ cost ¢ . csin’¢p

cos* R = Py punw (4)
and for the circles (2) and (3) we get the relations
. bcos*d bsin*d
cos’ It = e T h-a’ )
2V RN
cos? Jp = 4208 &  asin®d (6)

a—c a-0b"

where 8, 8" are the distances of their centres from the internal
centre of the curve.

Putting
a=-ccot’a, b=-ccot’3

in these equations, they become
cos* I = sin®a cos®¢ + sin’3 sin®g, (7)

) cos’@ sin’a .
cos®* R = cos*3 cos*d + Sine - SR sin®9d, (8)

cosa sin? .
cos’ R = cos’a cos’d — — 2~.—'§ sin®&’. 9)
sin’a — sin®(3

Hence we see from (7) that the radii of the circles of the
g - a, %— 3. Also the
maximum value of the radius of (2) is equal to (3, and the
minimum value of the radius of (3) is a. For the latter
systems of circles the radii have their minimum and maxi-
mum values, respectively, when the circles have four-point
contact with the curve at the vertices.
02

system (1) vary between the limits
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351. To find the differential equations in elliptic co-ordi-
nates of the systems of circles having double contact with a
sphero-conic.

Let the equations

28 2 o2
2 + 2y 1? 2 2 O’

e )
22 ?/2 o2

== B 2 0,

combined with the equation of the sphere, determine two
intersecting confocal sphero-conics; then we have

bex = pv, b /(¢ = 0y =/ {(1* — 0°) (0" - 1?)}
(= 5=/ - @) (@)
Now, if we have the differential equation

it e =0 @)

VA = @)t =07 (@ =)0 -0

the integral of this equation, by the theory of elliptic
functions, can be written in either of the forms

- BP0
Ly + B o/ (@ = a?)@ — )} + O = 0.

Hence, since (1* - ¢*)(¢* - v*) is proportional to the sphero-
conic corresponding to the value u=a=csina, we see, from
(4), that (3) is the differential equation of the system of
circles (1) in the preceding example.
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In the same way we can show that the differential equa-
tions of the other two systems of circles are

d/u dv _
I V(e ) R

udu vdy _
AP e o e v [ e e )|

From these equations it follows at once that two circles
of the same system make equal angles with the two confocal
conics which pass through their intersection.

3562. To find the angle ¢ between two circles of the same
system which have double contact with a sphero-coniec.

If do,, do., are the elements of the arcs of the two confocal
sphero-conics, we have

V= ) dy V=)
NGRS = =)

hence, if a curve defined by the equation

()

doy = doy =

Pd,u, + Qdv =0

meet the curve u at the angle ¢, we get
Q (Z)z—v (¢ =)
u (= 1) (@ — 1))

But i = L¢, and putting then for P, Q the values obtained
from (3) in the preceding example, we get

(2)

tan< =

(,u—(()(c—v) o
tando = (=)@ =) (8)
From (3) we find
(a”+>c)(,u + %) = 2(a%c® + u*v?)

(@=a) =)

COS¢p =
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but from (1) in the preceding example, we have
W=yt + 0P+ (B + ) o

Thus we see that if the circles cut orthogonally, the locus
of their intersection is a sphero-conic having the same centres
as the given one.

If the circles cut at a constant angle, their intersection
will lie on a cone of the fourth order,

353. If a tangent great circle to the sphero-conic defined
by the equation u = « in elliptic co-ordinates make the angle
¢ with the confocal at the point u, v, we can show that

u* cos® i + v* sin®i = a* ; (1)

hence, if such a great circle cut orthogonally the circle re-
presented by the equation (3), Bx. 851, we have

1+ tand tand’ = 0;
and, therefore, from (3) in the preceding example,
(1 = )/ (= ) = (@ =) /(0 = ) = 0
or, clearing of radicals and dividing by u* - +?,
(¢ = ) = ) - (¢ = = 0,

which becomes, by transformation to Cartesian co-ordinates

(see Ex. 351, (2)),
A - )t — (¢ — @)@ + g + 22 = 0. )

Thus we see that one of the tangent great circles, drawn
to the curve from any point of the small circle (2), passes
through the centre of a circle of the system (1), Ex. 350,
which passes through the same point.
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354. If 3 is the distance between the centres of two
circles of the system (1), Ex. 350, we have

{(costa — sin? B)(@* + ¢?) - (sin’a + sin? B)&*}°
~ 4 sin*a sin®*f3 cot? 3 (#* cot’a + y* cot? 3 — #*) = 0,

where z, y, = are the co-ordinates of the intersection of the

circles. For the angle 3 is evidently the angle between

those tangents to the conic (see Conics, Art. 169, Ex. 3)

x2 ?/2

==0, sin’a sin’ @’

which are the projections of the circles on the plane of wy.
Hence, if the centres of the circles are 90° distant from

each other, their intersection will lie on the small circle

(cos’a — sin’f3) («* + ¥°) — (sin’a + sin?*3)e’* = 0,
and their radii p, o’ will be connected by the relation (Ex.

350, (7)),
cos’p + cos®p’ = sin’a + sin® (3.

355. To find the locus of the points through which
circles of the systems (1) and (3), Ex. 350, cut each other
orthogonally.

From (3), Ex. 352, we have, for the first system,

- [flet = @) = vy
i = e M
and similarly for the second system from Ex: 351, (6),
v/t - a"’>

tani" = - || '5
[V AN(Ea T

)
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But 1 +tanstane” = 0;

hence, if we put w=csing, v=csiny,
we have, from (1) and (2),

sin 2¢(Ra* — ¢ + ¢* cos 2¢) + sin 2 (2a® — ¢* + ¢* cos 2¢)= 0,
which gives, after dividing by  sin (¢ + ),

a*cos¢ cosy + (¢* - a*)sing siny = 0
or, transforming to Cartesian co-ordinates,
@& \(* -0z (- a*)bx =0,

which represents a pair of great circles passing through the
centre 2.

356. If 0 is the angle between the two circles considered
in the preceding example, we find

{(a*=0*) (= a*)a* + a* (¢ - a®)y* — a* (a* — D°)&*) |

_V
tan 6 = @ /(¢ — bz £ (@° — ¢*)bx ’

hence we see that if 6 is given, the locus of the intersection
of the circle consists of two sphero-conics having double con-
tact with the given curve.

357. If 0 is the angle between a tangent great circle to
the sphero-conic u = ¢, and a circle of the system (3), Ex.
351, show that

~ Vv {(az_ bz)(cz _a2>mz+a2<02_ 662>?/2 _ a‘z(az_ bz)z2}
tand = E—a' e/ (- 0z ’

358. If we take two circles of the system (2), Ex. 350,
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their centres of similitude are determined by the equa-
tion
sin(¢p - J)
sin (¢ - o)

sin R
sin R’

=+

sin R sind F sin R’ sind
sin R cosd T sin R cosd’

hence tang =
and therefore

sin*R sin?d’ — sin*R’ sin®d ()
sin® R cos? &’ — sin*R’ cos* o

tan¢ tan¢’ =

Now, (8), Ex. 350, can be written in the form

sin®R  sin®$
—— = = 1, 2
sin*(3 * sin’y 1 )
where vy is the distance of a focus from the centre of the
curve. Hence, from (1) and (2), we have

tan ¢ tan ¢’ = tan®y,

which shows that the centres of similitude of two circles of
the system considered are harmonically conjugate with the
foci.

In the same way we can show that the centres of simili-
tude of a pair of circles of either of the two other systems
subtend a right angle at either of the foci.

359. From () in the preceding example we can show
that if 6, 0" are the angles which the tangent great circles
from the foci to the circles of the system (2), Ex. 350, make
with the axis, then we have

sin@sin 6’ = S%nz .
sin®y

360. To show that the circles of the system (1), Ex. 350,
cut off constant intercepts from the cyclic ares.
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Let the equation of one of the circles be written

?/
~—— COS (;b + =
sina sin 3

sing -1=0, (1)

and that of a cyclic are
y 4/ (sin*a — sin*3) —zsinf3 = 0
(see Ex. 833) ; then we may put
sin 3 +/ (sin%a — sin*3) .

y = —" gin =Y 7 Plgin (2)
Y= Gna 00 sina £ ‘

where p is the distance of zys from yz. Hence, since « = cos p,
from (1) we have

cosp cos¢p + sinpsing = sina,

and, therefore, p —¢ = 7—; —a, Of a-g,

from which we get p1— p =T — 2a.

361. To find the envelope of the radical axes of a fixed
circle and the system of circles at (1), Ex. 850.
Let the equation of the variable circle be written

@ Y oo N e ey L
(sina cos ¢ + s s1n¢> @ +y+2)=0,
and that of the fixed circle

(lo + my + n2)*— (& +y* +8°)=0; (1)

then for a radical axis we have

x v
b+ oy + ns t(.———r cosgh + —— sing | = 0 (2
yrn ¢ sin 3 7)) @)

Sina
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but the envelope of this great circle is

+ A 0 (3)
sin’3) ’

which represents a sphero-conic touching the imaginary

cyelic arcs

2

z
le + my + ng)® - | =
( Y ) sin‘a

2 2
& + K
sin’a  sin’3 7’

and passing through the points where the fixed circle meets
the given curve.

‘When the circle (1) is touched by a circle of the variable
system, the radical axis is the tangent at the point of contact.
Hence, to find the points where (1) is touched by four circles
of the system, we draw the common tangents of (1) and (3),
and then these tangents touch (1) in the required points.

362. Reciprocally we can show that the locus of the
centres of similitude of a fixed circle S and a system of
circles having double contact with a sphero-conic U is a
sphero-conic touching the common tangents of S and U,
and passing through a pair of real or imaginary foci of U.

This envelope will also determine the four points on §
where it is touched by circles of the system.

363. A great circle touches two circles having double
contact with a sphero-conie, to show that its points of coun-
tact with them lie on the same concyeclic sphero-conie.

For the circles we have, from (3), Ex. 352,

il =) =),
fan \/ @ =) (@ = m} ’

and if the great circle touch the confocal conic u = «/, we
have (Ex. 853, (1)),

i/ ,,2 2

. -
tani’= (M;—

IR T
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hence, since 7 = ¢" in the case we are considering, we get

b= e =) (@A)
W-a @ - v o

or, dividing by u* — ¥
(n* = a*)(a® = v*) = (¢* = a®)(a* - a”) = 0, (1)

which, by transformation to Cartesian co-ordinates, gives
the result stated above.

Putting @' =c¢siny in (1), we see that the points of the
contact of the tangent great circles from the foci to the
system lie on

(" - @) (@ =) = (¢ ~ @) (@~ B) = O,

which, being transformed to Cartesian co-ordinates, is found
to represent the real cyclic arcs of the curve.

364. Through the centre of a circle having double con-
tact with a sphero-conic tangent great circles are drawn to a
confocal sphero-conic; show that they meet the circle on
a small circle passing through the intersection of the given
curves.

365. Tangents are drawn from a focus of the curve to
circles of the system (1), Iix. 350; to show that they contain
a constant angle.

If 0 is the angle between the tangents, we have

sin R
sin A’

sinl 0 = (1)
where A is the distance of the focus from the centre of the
circle ; but

sin’A = 1 - sin’® y cos*J, (2)
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and, from (7), Ex. 350,
cos’R = sin’a cos*d + sin*3 sin®,
or sin’R = cos’3 (1 — sin®y cos*d); (3)
hence, from (1), (2), and (3) we get
0=m-2p0.

This result might also be arrived at by reciprocating
Ex. 360.

366. Show that a variable circle, having double contact
with a sphero-conic, meets two fixed tangent great circles of
the curve at angles whose sum or difference is constant.

Also show that a variable tangent great circle meets
two fixed circles, having double contact with the curve, at
angles whose sum or difference is constant (see Ex. 119).

367. A circle, having double contact with a sphero-coniec,
cuts orthogonally a circle having double contact with a con-
focal sphero-conic; if the circles have their centres on the
same axis, show that the locus of their intersection is a
sphero-conic having the same centres as the given ones.

368. If we are given a circle of the system (2), and

another of the system (3), Ex. 850, we have the relations
(8) and (9) in the same example, which we may write in the

form
sin’*(3

tan’a sin’R + tan’3 cos’ R = —;
COS"a

cos*d, (1)

sin‘a o
e cos*d'. ()

Now if D is the distance between the centres of the
circles, we have

tan®a cos’R’+ tan*3 sin’R’ =

cos D = cosd cos ¢';
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hence, from (1) and (2) we get
(tan®a sin®R + tan3 cos’R)(tan’a cos’R’ + tan®( sin®R’)

= tan’a tan’(3 cos* D, (3)

from which we see that tana
tan(3
values.

Similarly, if we are given circles of the systems (1) and
(3), Ex. 350, we can show that the axis major a of the curve
is given; and given circles of the systems (1) and (2), (3 is
given.

369. A circle, having double contact with a sphero-conic,
touches a circle having double contact with a confocal sphero-
conic; if the circles have their centres on different axes, show
that the locus of the point of contact is a concentric sphero-

has one or other of two given

conie.

If the circles cut each other orthogonally, show that the
locus of their intersection consists of two chords of intersec-
tion of the given curves.

370. A circle whose radius is p and centre #, 0, z cuts the
sphero-conic

az® + by* + ¢g* =0

orthogonally at two points, show that

. (a2 + c2®) { , c> . @\
tan’e = e a*| 1 - ;)" <1 - 5>,.
Hence, show that the circle also cuts the sphero-conic

ax® 2

e
b—a Y T 0

orthogonally at two points.
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371. Show that the envelope of the circles considered in
the preceding example is projected on the plane of #z into
the evolute of the conic

x 2? b
¢ (b-a) N @ (b -0) (@b + be - ca)? -
372. By the same method as that which we used in

Ex. 162 we can show that if triangles be inseribed in the
sphero-conic

S =ar® + by* + ¢z* =0,
and circumscribed about the sphero-conic
S =da*+ Vy* + =2 =0,
then the normals to S at the vertices of the triangle pass

through a point.
Also the sphero-conic

8= (b-c)dyz+(c—a)yza + (a—0)gwy =0

passes through the feet of the normals drawn from o,y ¢
to S. Hence, since S” circumscribes triangles circumseribed
about §’, we find from the invariant relation connecting the
two latter conics that the points through which the normals
pass lie on the sphero-conic

d(b—e)a*+ 0 (c-a)y+(a-0)rs=0. (1)

a 2_6 P AV
It ;(b— ¢) —E(c—a) == (e - 0)%, (?)

the locus (1) coincides with S. Thus we see that if nor-
mals be drawn to the curve from any point on itself, the
arcs joining their feet form a triangle circumscribed about
the sphero-conic
ax? by* cz?

=0
(b—c) N (¢ —a) " (@ = 0)*
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We are permitted to assume the equations (2), for they
are consistent with

J@)Jo)dE)-o

the invariant relation connecting S and §'.

373. From the point where a normal to a sphero-conic
touches the evolute two other normals are drawn to the curve;
show that the great circle joining their feet is a normal to a
concentric sphero-conie.

874. In the same way as in Ex. 204 we can show that if
a sphero-conic have double contact with a fixed sphero-conic
U and a fixed circle 7, then a pair of foci will lie on one of
the conies confocal with U, which pass through the extremi-
ties of a diagonal of the quadrilateral formed by the common
tangents of U and V.

These pair of foci lie on a great circle passing through
the centre of 7 ; and if they are imaginary, the real foci will
be the anti-points of a pair of points in which a great circle
passing through a fixed point meets a fixed sphero-conic. To
find this locus, let the fixed point be «/, ¥/, ¢/, and the fixed

sphero-conic
S = az® + by + ¢zt = 0.

Forming, then, the equation of the chords of intersection of
S and
PR=@"+y*+2%a*+y* + %) (o' + yy + 25 = 0
and expressing that this equation is satisfied by the co-ordi-
nates of the fixed point, we obtain the locus required :
abe P*Q*— S'PQF + 8™ 8 (#* + y* + &%) = 0,
where

S =ar+ by +cz? F=alb+c)a*+b(c+a)y*+ c(a+ b))z



SPHERO-CONICS. 209

Thus the complete locus for the three systems of variable
curves consists of three confocal sphero-conics and three
curves lying on cones of the fourth order.

375. A sphero-conic has double contact with a fixed
circle and touches two great circles; show that the locus
of its foci consists of two great circles and a curve lying
on a cone of the fourth order.

376. If u and v have the same meaning as in (1),
Ex. 339, show that the differential equation

du . dv L
VA= @)t - a®) (- )} T V(@ - )@ - ) (¢ - 0t
represents one of the systems of sphero-conies which have
double contact with the confocal sphero-conics u =a, u = a’
(see Ex. 212).

377. To show that the sum of the cotangents of the
common tangents of a circle and a sphero-conic is equal

to zero.

Let p be the length of the perpendicular from a fixed
point on a tangent to the curve, and let w be the angle
which the perpendicular makes with a fixed line; then we
know that

dw
cott=cosp —, 1
i 1)

where ¢ is the length of the intercept between the point of
contact and the foot of the perpendicular.

Hence, since p is the same for the four tangents which
touch a circle having the fixed point for centre, we have,
from (1),

d3w
Scott =cosp —. 2
P (2)

But projecting the circle and sphero-conic by rays through
P
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the cenfre of the sphere on the tangent plane at the fixed
point, these curves are transformed into a circle and a
conic, respectively, and the angle w becomes the correspond-
ing angle w in the plane. Now we have seen in Ex. 232
that 2w in the plane is independent of p; hence, from (2),

we obtain
S cott = 0.

378. Show that a circle meets a sphero-conic at angles
the sum of whose co-tangents is equal to zero.

379. If ays, 2y« are the co-ordinates of the centres, and
p, o’ the radii of the polar and circumscribing circles, respec-
tively, of a triangle self-conjugate with regard to the sphero-

conic
ar* + byt + cz* = 0,
show that

(awa’ + byy + cz8')* — sin’p(a* 2™ + Uy + &)
— sin?p’(a*2® + b*y* + ¢*2*) + sin’p sin’p (@* + 0* + ¢*) =0

(see Ex. 273).

380. Given four tangents to a sphero-conic, to find the
locus of the foci.

Let a, 3, v, 8 be the sines of the perpendiculars from
a point on the four tangents, and let

la +mB +ny +pd=0 1)

be an identical relation connecting these perpendiculars.
Then, since the product of the sines of the perpendiculars
from the foci on any tangent is constant, if one focus satisfy
(1), the other must lie on

I3y3 + myda + ndaf3 + paf3y = 0,
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which represents a cubic cone passing through all the inter-
sections of the given tangents.

381. If the two sphero-conics described through a point
P to touch four fixed great circles cut orthogonally at P,
show that P lies on the locus found in the preceding example
(see Ex. 298).

382. Given four points on a sphero-conic, show that the

locus of the foci is
/sina +msin 3+ nsiny + psin d = 0,

where a, (3, y, 0 are the distances of a point from the four
given points, and /, m, n, p are such that

lcosa + mcos 3 +mncosy + pcosd =0,

identically.

383. Right-angled triangles are inscribed in a sphero-
conic; show that the locus of the point where the normal
at the right angle meets the opposite side is a sphero-conic
having its centres in common with the given curve.

Also, if the curve is equilateral (see Ex. 844), show that
the intersection of the normal and the opposite side is the
pole of the tangent.

384. To determine the direction of the two chords of
a sphero-conic which may be drawn through a fixed point

in space.
Let o/, 4/, ¢ be the co-ordinates of the fixed point, and

let us take
z=a"+pcosa, y=y +pcosfB, s=2+pcosy

oly faopnrnt on a line passing through #y’z". Substituting,
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